West Asian climate during the last millennium according to EC-Earth model

West Asia is one of the most vulnerable regions to ongoing climate change but has been poorly investigated. Therefore, it is crucial to understand the impact of anthropogenic greenhouse gas, natural forcing, and internal climate variability on temperature and rainfall in this region. In this study,...

Full description

Bibliographic Details
Main Authors: Karami, Mehdi Pasha, Mohtadi, Mahyar, Zhang, Qiong, Koenigk, Torben
Format: Article in Journal/Newspaper
Language:unknown
Published: NRC Research Press (a division of Canadian Science Publishing) 2019
Subjects:
Online Access:http://hdl.handle.net/1807/98676
http://www.nrcresearchpress.com/doi/abs/10.1139/cjes-2018-0216
Description
Summary:West Asia is one of the most vulnerable regions to ongoing climate change but has been poorly investigated. Therefore, it is crucial to understand the impact of anthropogenic greenhouse gas, natural forcing, and internal climate variability on temperature and rainfall in this region. In this study, we focus on the climate of West Asia during the last millennium by using a transient simulation of the global earth system model EC-Earth (v3.1). The model performs well in terms of present-day temperature and precipitation patterns and their regional averages. Time series of yearly-mean precipitation and temperature of West Asia show that precipitation increases until the start of the Little Ice Age (1450–1850 CE) and subsequently decreases, whereas temperature shows a cooling trend during the entire last millennium. We first discuss the model output data for climate trends during two periods, 850–1450 CE and 1450–1850 CE. In 850–1450 CE, the largest wetting trend occurred in the eastern regions to the north of the Persian Gulf because of a westward shift of the Indian precipitation core and more moisture transport from the Arabian Sea. The precipitation trend in 1450–1850 CE had a different pattern with a drying trend in the west of the Caspian Sea and overall getting less wet compared with the first period. Temperature showed cooling trends for both periods with the largest values happening in the northern regions. The North Atlantic sea surface temperature cooling and the subsequent change in atmospheric circulation played a role in the wetting and cooling of West Asia. In the second part of the study, we remove the trends and discuss the multi-decadal variability of West Asian climate. It was found that Atlantic multi-decadal and Pacific decadal oscillations strongly contributed to West Asian temperature variability. For West Asian precipitation variability, we found remote connections with the Nordic seas and tropical Pacific Ocean. The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author.