Evaluating whether metapopulation structure benefits endangered diadromous fishes

Metapopulation structure is typically thought to increase regional species abundance, promote population persistence, and aid in the re-establishment of extirpated populations. However, the underlying theoretical models tended to assume high productivity, making the conservation benefit of metapopul...

Full description

Bibliographic Details
Main Authors: Bowlby, Heather D., Gibson, A. Jamie F.
Format: Article in Journal/Newspaper
Language:unknown
Published: NRC Research Press (a division of Canadian Science Publishing) 2019
Subjects:
Online Access:http://hdl.handle.net/1807/98574
http://www.nrcresearchpress.com/doi/abs/10.1139/cjfas-2019-0001
Description
Summary:Metapopulation structure is typically thought to increase regional species abundance, promote population persistence, and aid in the re-establishment of extirpated populations. However, the underlying theoretical models tended to assume high productivity, making the conservation benefit of metapopulation structure uncertain for endangered species with low productivity. We simulated population assemblages (N = 50) of diadromous fishes under high to low productivity scenarios to explicitly assess how straying (movement from natal to non-natal rivers) contributes to changes in species abundance and extinction risk. The population aggregation exhibited greater total abundance from source–sink dynamics and also exhibited the rescue effect when productivity remained moderately high. However, straying did not ensure persistence of nonviable populations or enable population re-establishment when productivity was low. These results were robust to a wide range of alternate spatial and life-history parameterizations of the simulation model. Relative to a real-world population aggregation of endangered Atlantic salmon (Salmo salar), our results would argue for a shift in remediation priorities to prevent extinction. Although there is strong evolutionary justification for maintaining widespread distributions of endangered diadromous species, the immediate numerical consequences of this approach may hinder recovery. The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author.