Environmental, anthropogenic, and dietary influences on fine scale movement patterns of Atlantic salmon through challenging waters.

Partial barriers to migration can affect migratory fish population dynamics and be influenced by many biotic, abiotic, and anthropogenic factors, including nutritional deficiencies. We investigated how such variables (including a thiamine deficiency) impact fine-scale movement of landlocked Atlantic...

Full description

Bibliographic Details
Main Authors: Harbicht, Andrew B, Castro-Santos, Theodore, Gorsky, Dimitry, Hand, David M., Fraser, Dylan J, Ardren, William R.
Format: Article in Journal/Newspaper
Language:unknown
Published: NRC Research Press (a division of Canadian Science Publishing) 2018
Subjects:
Online Access:http://hdl.handle.net/1807/89911
http://www.nrcresearchpress.com/doi/abs/10.1139/cjfas-2017-0476
Description
Summary:Partial barriers to migration can affect migratory fish population dynamics and be influenced by many biotic, abiotic, and anthropogenic factors, including nutritional deficiencies. We investigated how such variables (including a thiamine deficiency) impact fine-scale movement of landlocked Atlantic salmon, by treating returning spawners with thiamine and observing their attempts to climb a human-altered, high velocity stretch of river using fine-scale radio telemetry. Multiple re-entries into a river section, along with water temperature, strongly influenced movement rates. High or increasing discharge encouraged downstream movement; males abandoned migratory attempts at a higher rate than females. Although thiamine-injected salmon exhibited greater migratory duration, this did not produce a measurable improvement in passage performance, possibly due to the difficulty associated with this section of river - among 24 tagged salmon staging 10.9 attempts each and lasting 1.5 days/attempt on average, only three traversed the entire reach. This study provides new insights into how biotic and abiotic variables affect fish movement, while suggesting limits to the potential for human intervention (thiamine injections) to assist passage through partial migratory barriers. The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author.