Culture of striped trumpeter (Latris lineata) post-larvae

The striped trumpeter (Latris lineata) has been the subject of research at the Marine Research Laboratories, Taroona since the 1980s as an alternative species for the Tasmanian Atlantic salmon (Salmo salar) farming industry. It is an endemic species with excellent white flesh, high in polyunsaturate...

Full description

Bibliographic Details
Main Author: Choa, BH
Format: Thesis
Language:English
Published: 2010
Subjects:
Online Access:https://eprints.utas.edu.au/10702/
https://eprints.utas.edu.au/10702/1/choa-whole-thesis-excl-pub-mat.pdf
https://eprints.utas.edu.au/10702/2/choa-_whole-thesis-incl-pub-mat.pdf
https://eprints.utas.edu.au/10702/3/front-choa-thesis.pdf
Description
Summary:The striped trumpeter (Latris lineata) has been the subject of research at the Marine Research Laboratories, Taroona since the 1980s as an alternative species for the Tasmanian Atlantic salmon (Salmo salar) farming industry. It is an endemic species with excellent white flesh, high in polyunsaturated fatty acids. Considerable research has been conducted into improving larval survival and quality through better understanding of optimal rearing conditions, nutrition and health. The culture of juvenile striped trumpeter is complicated by a prolonged post-larval or “paperfish” stage which can last up to nine months. My study is the first to research the nutrition and optimal rearing conditions of striped trumpeter post-larvae. Prior to this study, post-larvae were weaned from live feeds at three months of age. Research showed post-larvae could be weaned onto formulated diets using a co-feeding strategy at 40 days post-hatch (dph) and could be fully weaned onto microdiets at 50 dph. Feeding larvae with live feeds led to higher survival and growth but the use of live feeds required more financial and human resources and did not have a consistent nutritional profile. The adoption of feeding formulated diets to larvae by 50 dph has greatly increased production of post-larvae. Temperature regime was found to be the most significant factor influencing growth and development of post-larvae. Three-hundred-day-old post hatch post-larvae (12.1 ± 0.2 g, mean ± SE) were reared at 12, 14, 16 and 18 oC, over 84 days. Polynomial models predicted that growth was maximised between 12.9 oC (thermal growth coefficient) and 14.4 oC (specific growth rate). Post-larvae reared at 16 oC exhibited similar growth rates but did not metamorphose into juveniles as quickly as post-larvae reared at 14 oC and 12 oC. Post-larvae reared at 18 oC showed the slowest growth and metamorphosis rates. Post-larvae reared at temperatures outside the optimum required more nutrients to cope with the increased metabolic demand and this was reflected in their ...