Effects of aquaculture related stressors and nutritional restriction on circulating growth factors (GH, IGF-I and IGF-11) in Atlantic salmon and rainbow trout

The effects of aquaculture related stressors on circulating levels of GH, IGF-I and for the first time, IGF-II in Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) were investigated. Specifically, circulating growth factor levels were measured in four different experiments. Two 2...

Full description

Bibliographic Details
Published in:Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology
Main Authors: Wilkinson, RJ, Porter, MJR, Woolcott, H, Longland, RM, Carragher, JF
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier Inc 2006
Subjects:
Online Access:https://doi.org/10.1016/j.cbpa.2006.06.010
http://www.ncbi.nlm.nih.gov/pubmed/16861022
http://ecite.utas.edu.au/42112
Description
Summary:The effects of aquaculture related stressors on circulating levels of GH, IGF-I and for the first time, IGF-II in Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss) were investigated. Specifically, circulating growth factor levels were measured in four different experiments. Two 24 h confinement stressor procedures, (one with Atlantic salmon, the other with rainbow trout); following a hypo-osmotic stressor (freshwater bath) in salt water acclimated, adult, Atlantic salmon; and during a 22 day starvation and re-feeding protocol with juvenile Atlantic salmon. Handling and confinement resulted in significant decreases in circulating levels of all three growth factors in Atlantic salmon, and IGF-I and IGF-II (but not GH) in rainbow trout. A 2-3 h freshwater bath to remove gill parasites on a commercial Atlantic salmon aquaculture operation caused a significant decrease in circulating GH and IGF-I concentrations, but no significant change in IGF-II concentration, 2 days post bathing. Starvation for a period of 15 days in Atlantic salmon resulted in a significant increase in circulating GH levels and a significant decrease in circulating IGF-I and IGF-II. Re-feeding of starved fish for 7 days resulted in a significant decrease in GH to the concentration measured in continually fed fish, however re-feeding did not change plasma levels of IGF-I and IGF-II relative to continually starved fish. The results presented here confirm previously observed handling and confinement stressor induced effects on GH and IGF-I and, for the first time, on IGF-II in salmonids. Furthermore this study confirms the nutritional regulation of GH, IGF-I and IGF-II in juvenile Atlantic salmon.