Amoebic gill disease: sequential pathology in cultured Atlantic salmon, Salmo salar L

Amoebic gill disease (AGD) affects the marine culture phase of Atlantic salmon, Salmo salar L., in Tasmania. Here, we describe histopathological observations of AGD from smolts, sampled weekly, following transfer to estuarine/marine sites. AGD was initially detected histologically at week 13 posttra...

Full description

Bibliographic Details
Published in:Journal of Fish Diseases
Main Authors: Adams, MB, Nowak, BF
Format: Article in Journal/Newspaper
Language:English
Published: Blackwell Publishing Co 2003
Subjects:
Online Access:https://doi.org/10.1046/j.1365-2761.2003.00496.x
http://www.ncbi.nlm.nih.gov/pubmed/14653318
http://ecite.utas.edu.au/33988
Description
Summary:Amoebic gill disease (AGD) affects the marine culture phase of Atlantic salmon, Salmo salar L., in Tasmania. Here, we describe histopathological observations of AGD from smolts, sampled weekly, following transfer to estuarine/marine sites. AGD was initially detected histologically at week 13 posttransfer while gross signs were not observed for a further week post-transfer. Significant increases (P < 0.001) in the proportion of affected gill filaments occurred at weeks 18 and 19 post-transfer coinciding with the cessation of a halocline and increased water temperature at the cage sites. The progression of AGD histopathology, during the sampling period, was characterized by three phases. (1) Primary attachment/interaction associated with extremely localized host cellular alterations, juxtaposed to amoebae, including epithelial desquamation and oedema. (2) Innate immune response activation and initial focal hyperplasia of undifferentiated epithelial cells. (3) Finally, lesion expansion, squamation-stratification of epithelia at lesion surfaces and variable recruitment of mucous cells to these regions. A pattern of preferential colonization of amoebae at lesion margins was apparent during stage 3 of disease development. Together, these data suggest that AGD progression was linked to retraction of the estuarine halocline and increases in water temperature. The host response to gill infection with Neoparamoeba sp. is characterized by a focal fortification strategy concurrent with a migration of immunoregulatory cells to lesion-affected regions.