Electronic intelligence development for wearable applications

In recent years there has been an enormous growth in the diversity and market penetration of small electronics appliances. Nowadays, people commonly carry such devices as mobile phones, Personal Digital Assistants (PDAs), and electronic sports accessories as an essential part of daily life. These de...

Full description

Bibliographic Details
Main Author: Hännikäinen, J.
Other Authors: Elektroniikka - Institute of Electronics, Sähkötekniikan osasto - Department of Elecrical Engineering
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: Tampere University of Technology 2006
Subjects:
Online Access:https://trepo.tuni.fi//handle/10024/114130
Description
Summary:In recent years there has been an enormous growth in the diversity and market penetration of small electronics appliances. Nowadays, people commonly carry such devices as mobile phones, Personal Digital Assistants (PDAs), and electronic sports accessories as an essential part of daily life. These devices are typically carried in pockets or bags and handheld when in use. User Interface (UI) devices are located on strategic parts of the body such as the wrist to facilitate free and easy access to them. An ease-of-use solution for carrying the increasing number of such personal devices is to embed or integrate them into clothing and accessories. Such solutions are known as wearable electronics systems and they are becoming essential aids for people in a wide range of applications areas such as communication, maintenance and repair, and location and navigation. This trend has caused a growing need to create smaller and lighter devices which can be unobtrusively integrated and embedded in clothing. To achieve this, suitable applications for mobile environments as well as specific clothing-like technologies for their design and implementation need to be developed. This study investigated specific applications utilising clothing as electronics platforms to ascertain whether usable clothing platform applications can be designed and implemented. This was done by implementing five wearable electronics application prototypes as clothing platforms: a fully functional smart clothing prototype for survival in arctic environments, two electrical heating prototypes to maintain users thermal comfort conditions, a personal positioning vest for fishing, and a bioimpedance measurement suit for Total Body Water (TBW) estimation. For the implementation, application-specific solutions were utilized. Functionality, user acceptance, and usability of prototypes were verified. Usability evaluations were also made for a specific location and information service application. This was done to elicit the importance of usability evaluations in ...