The biological and behavioural basis of host selection in the transmission of Gyrodactylus (Monogenea)

The ectoparasitic monogenean fluke, Gyrodactylus salaris, is a parasite known to be highly pathogenic to Atlantic salmon (Salmo salar). Although present in the environment of several neighbouring European countries, the UK is thought to be G. salaris-free, but, if national contingency plans to contr...

Full description

Bibliographic Details
Main Author: Grano Maldonado, Mayra Ixchel
Other Authors: Shinn, Andrew, Department of Environment, Food and Rural Affairs (Defra) and the Centre for the Environment, Fisheries and Aquaculture Science (Cefas) under project FC1175.
Format: Doctoral or Postdoctoral Thesis
Language:English
Published: University of Stirling 2010
Subjects:
tem
sem
Online Access:http://hdl.handle.net/1893/3700
http://dspace.stir.ac.uk/bitstream/1893/3700/1/Mayra_Grano_Maldonado_Thesis_Final.pdf
Description
Summary:The ectoparasitic monogenean fluke, Gyrodactylus salaris, is a parasite known to be highly pathogenic to Atlantic salmon (Salmo salar). Although present in the environment of several neighbouring European countries, the UK is thought to be G. salaris-free, but, if national contingency plans to control this parasite are to be effective, it is vital that we understand the factors underlying its transmission from host to host. This study demonstrates that the majority of parasites transferring to new hosts are mature parasites that have reproduced at least once. Since, exploration and host transfer strategies pose a risk to survival; the parasite will endeavour to pass on its genes before attempting to transfer from one host to another. This study has also shown that when pregnant parasites are forced to leave their hosts, their offspring are aborted prematurely to ensure the survival of the mature parasite. Gyrodactylids do not possess a free-swimming stage in their life cycle, which allows for their migration between hosts. In spite of this, they are able to rapidly colonise naïve hosts, even in non-shoaling populations of fish. This study investigates the transmission strategies employed by detached parasites in the colonisation of new hosts. Observations of gyrodactylids collected from 3-spine sticklebacks, Gasterosteus acuelatus, suggest that their activity increases as a stickleback approaches, alerting the host to its presence. The parasite is then ingested directly by the prospective host. A time series of experimental exposures and specimens prepared for Scanning Electron Microscopy (SEM) suggest that once ingested, the parasites attach to the lining of the buccal cavity and then migrate out to their preferred colonisation site on the outer surface of the fish. It is proposed that this may be an alternative route for host infection. Similarly, direct ingestion by the scavenging on infected hosts by 3-spine sticklebacks suggests another route of infection of new hosts. Although these routes of transmission ...