Alleviation of Mercury Toxicity to a Marine Copepod under Multigenerational Exposure by Ocean Acidification

Ocean acidification (OA) may potentially modify the responses of aquatic organisms to other environmental stressors including metals. In this study, we investigated the effects of near-future OA (pCO(2) 1000 mu atm) and mercury (Hg) on the development and reproduction of marine copepod Tigriopus jap...

Full description

Bibliographic Details
Published in:Scientific Reports
Main Authors: Li, Yan, Wang, Wenxiong, Wang, Minghua
Format: Article in Journal/Newspaper
Language:English
Published: 2017
Subjects:
Online Access:http://repository.ust.hk/ir/Record/1783.1-84923
https://doi.org/10.1038/s41598-017-00423-1
http://lbdiscover.ust.hk/uresolver?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rfr_id=info:sid/HKUST:SPI&rft.genre=article&rft.issn=2045-2322&rft.volume=7&rft.issue=324&rft.date=2017&rft.spage=&rft.aulast=Li&rft.aufirst=Yan&rft.atitle=Alleviation+of+mercury+toxicity+to+a+marine+copepod+under+multigenerational+exposure+by+ocean+acidification&rft.title=Scientific+Reports
http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=LinksAMR&SrcApp=PARTNER_APP&DestLinkType=FullRecord&DestApp=WOS&KeyUT=000397096300005
http://www.scopus.com/record/display.url?eid=2-s2.0-85016775472&origin=inward
Description
Summary:Ocean acidification (OA) may potentially modify the responses of aquatic organisms to other environmental stressors including metals. In this study, we investigated the effects of near-future OA (pCO(2) 1000 mu atm) and mercury (Hg) on the development and reproduction of marine copepod Tigriopus japonicus under multigenerational life-cycle exposure. Metal accumulation as well as seven life history traits (survival rate, sex ratio, developmental time from nauplius to copepodite, developmental time from nauplius to adult, number of clutches, number of nauplii/clutch and fecundity) was quantified for each generation. Hg exposure alone evidently suppressed the number of nauplii/clutch, whereas single OA exposure negligibly affected the seven traits of copepods. However, OA exposure significantly alleviated the Hg inhibitory effects on number of nauplii/clutch and fecundity, which could be explained by the reduced Hg accumulation under OA. Such combined exposure also significantly shortened the development time. Thus, in contrast to earlier findings for other toxic metals, this study demonstrated that OA potentially mitigated the Hg toxicity to some important life traits in marine copepods during multigenerational exposure.