Strong consistency of estimators for heteroscedastic partly linear regression model under dependent samples

In this paper we are concerned with the heteroscedastic regression model y i = x i β + g(t i ) + σ i e i 1 ≤ i ≤ n) under correlated errors e i , where it is assumed that σ i 2 = f(u i ), the design points (x i , t i , u i ) are known and nonrandom, and g and f are unknown functions. The interest li...

Full description

Bibliographic Details
Main Authors: Liang, Han Ying, Jing, Bing Yi
Format: Article in Journal/Newspaper
Language:English
Published: 2002
Subjects:
Online Access:http://repository.ust.hk/ir/Record/1783.1-27749
http://lbdiscover.ust.hk/uresolver?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rfr_id=info:sid/HKUST:SPI&rft.genre=article&rft.issn=1048-9533&rft.volume=15&rft.issue=3&rft.date=2002&rft.spage=207&rft.aulast=Liang&rft.aufirst=H.-Y.&rft.atitle=Strong+consistency+of+estimators+for+heteroscedastic+partly+linear+regression+model+under+dependent+samples&rft.title=Journal+of+Applied+Mathematics+and+Stochastic+Analysis
http://www.scopus.com/record/display.url?eid=2-s2.0-52649128667&origin=inward
Description
Summary:In this paper we are concerned with the heteroscedastic regression model y i = x i β + g(t i ) + σ i e i 1 ≤ i ≤ n) under correlated errors e i , where it is assumed that σ i 2 = f(u i ), the design points (x i , t i , u i ) are known and nonrandom, and g and f are unknown functions. The interest lies in the slope parameter β. Assuming the unobserved disturbance e i are negatively associated, we study the issue of strong consistency for two different slope estimators: the least squares estimator and the weighted least squares estimator. ©2002 by North Atlantic Science Publishing Company.