A linkage observed between austral autumn Antarctic oscillation and preceding Southern Ocean SST anomalies

In this study, the authors apply a lagged maximum covariance analysis (MCA) to capture the cross-seasonal coupled patterns between the Southern Ocean sea surface temperature (SOSST) and extratropical 500-hPa geopotential height anomalies in the Southern Hemisphere, from which Niño-3.4 signals and th...

Full description

Bibliographic Details
Published in:Journal of Climate
Main Authors: Hu, Chundi, Wu, Qigang, Yang, Song, Yao, Yonghong, Chan, Duo, Li, Zhenning, Deng, Kaiqiang
Format: Article in Journal/Newspaper
Language:English
Published: 2016
Subjects:
Online Access:http://repository.ust.hk/ir/Record/1783.1-110009
https://doi.org/10.1175/JCLI-D-15-0403.1
http://lbdiscover.ust.hk/uresolver?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rfr_id=info:sid/HKUST:SPI&rft.genre=article&rft.issn=0894-8755&rft.volume=v. 29&rft.issue=(6)&rft.date=2016&rft.spage=2109&rft.aulast=Hu&rft.aufirst=C.&rft.atitle=A+linkage+observed+between+austral+autumn+Antarctic+oscillation+and+preceding+Southern+Ocean+SST+anomalies&rft.title=Journal+of+Climate
http://www.scopus.com/record/display.url?eid=2-s2.0-84962308730&origin=inward
http://gateway.isiknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=LinksAMR&SrcApp=PARTNER_APP&DestLinkType=FullRecord&DestApp=WOS&KeyUT=000375786600009
Description
Summary:In this study, the authors apply a lagged maximum covariance analysis (MCA) to capture the cross-seasonal coupled patterns between the Southern Ocean sea surface temperature (SOSST) and extratropical 500-hPa geopotential height anomalies in the Southern Hemisphere, from which Niño-3.4 signals and their linear trends are removed to a certain extent. Statistically significant results show that the dominant feature of ocean-atmosphere interaction is likely the effect of atmosphere on SOSST anomalies, with a peak occurring when the atmosphere leads the SOSST by 1 month. However, the most eye-capturing phenomenon is that the austral autumn atmospheric signal, characterized by a negatively polarized Antarctic Oscillation (AAO), is significantly related to the gradual evolution of preceding SOSST anomalies, suggesting that the SOSST anomalies tend to exert an effect on the Southern Hemisphere atmospheric circulation. A regression analysis based on SOSST anomaly centers confirms these features. It is also demonstrated that the gradual evolution of changes in SOSST is mainly driven by internal atmospheric variability via surface turbulent heat flux associated with cold or warm advection and that the atmospheric circulation experiences a change from a typical positive AAO to a negative phase in this process. These findings indicate that such a long lead cross-seasonal covariance could contribute to a successful prediction of AAO-related atmospheric circulation in austral autumn from the perspective of SOSST anomalies, with lead times up to 6-7 months. © 2016 American Meteorological Society.