Utilisation de la stéréo radargrammétrie RADARSAT-2 pour le suivi de la fonte des calottes glaciaires Barnes et Penny (Île de Baffin, Nunavut, Canada)

Résumé : Le contexte récent d’accélération de la fonte des glaciers et calottes glaciaires (GCG) de l’archipel arctique canadien, jumelé aux difficultés de suivi des GCG de cette région, rendent essentiels le développement et l’utilisation de nouvelles approches innovatrices de suivi. Le potentiel d...

Full description

Bibliographic Details
Main Author: Papasodoro, Charles
Other Authors: Royer, Alain, Langlois, Alexandre
Format: Other/Unknown Material
Language:French
Published: Université de Sherbrooke 2015
Subjects:
Online Access:http://hdl.handle.net/11143/6870
Description
Summary:Résumé : Le contexte récent d’accélération de la fonte des glaciers et calottes glaciaires (GCG) de l’archipel arctique canadien, jumelé aux difficultés de suivi des GCG de cette région, rendent essentiels le développement et l’utilisation de nouvelles approches innovatrices de suivi. Le potentiel de la stéréo radargrammétrie (SRG) RADARSAT-2 est ici caractérisé pour l’extraction d’élévations et le calcul de changements d’élévation et de bilans de masse (historiques et récents) sur les calottes glaciaires Barnes et Penny (Nunavut, Canada). Par la méthode semi-automatisée de recherche de corrélation à partir de couples stéréoscopiques RADARSAT-2 de 2013 (mode wide ultra-fin; résolution spatiale de 3 m; taille d’image de 50 km x 50 km), une précision verticale de ~7 m (LE68) est mesurée sur la terre ferme, et cette valeur de précision est possiblement légèrement supérieure sur la calotte Barnes, étant donné la variabilité de profondeur de pénétration. Par captage 3D, une précision altimétrique de ~3-4 m (LE68) est mesurée par différents photo-interprètes à partir de couples RADARSAT de 2012 en zone d’ablation de la calotte Penny. Sur la calotte Barnes, les changements d’élévation mesurés par rapport aux premiers modèles numériques de terrain disponibles permettent de mesurer un bilan de masse spécifique historique (1960-2013) de -0,49 ± 0,20 m w.e./année, pour un bilan de masse total de -2,9 Gt/année. Entre 2005 et 2013, le bilan de masse spécifique de cette calotte augmente significativement à -1,20 ± 0,86 m w.e./année, pour un bilan de masse total de -7 Gt/année. En zone d’ablation de la calotte Penny, un changement d’élévation annuel moyen de -0,59 m/année est mesuré entre 1958 et 2012. Parallèlement, plusieurs aspects méthodologiques et techniques sont discutés et analysés. Des profondeurs de pénétration nulles (bande C) sont mesurées à partir des images acquises sur la calotte Barnes à la toute fin de la saison d’ablation (fin septembre/début octobre), alors que cette profondeur augmente à ~2,5-3 m pour des images acquises à la fin octobre/début novembre (période de gel). Nos résultats suggèrent aussi que le modèle de fonction rationnelle, lorsqu’utilisé avec des images RADARSAT-2 en mode wide ultra-fin, permet d’obtenir des précisions plus constantes que le modèle hybride de Toutin. De par son indépendance des conditions météorologiques, son utilisation possible sans point de contrôle et sa simplicité de traitement, la SRG RADARSAT-2 s’avère donc être une excellente alternative aux technologies actuelles pour le suivi de GCG situés dans des régions affectées par des contraintes opérationnelles importantes. Abstract : Given the recent melt acceleration of the Canadian arctic archipelago’s ice caps and the monitoring difficulties of this remote region, the development of new innovative monitoring tools has become essential. Here, the potential of the RADARSAT-2 stereo radargrammetry (SRG) is characterized for elevations extraction, as well as for elevation changes/mass balances calculations (historical and recent) on Barnes and Penny ice caps (Nunavut, Canada). Using the semi-automatic approach of correlation search from RADARSAT-2 stereoscopic couples of 2013 (wide ultra-fine mode; spatial resolution of 3 m; coverage of 50 km x 50 km), a vertical precision of ~7 m (LE68) is measured on ice-free terrain and this precision is possibly slighty worse on the ice cap because of the penetration depth’s variability. On the other hand, the 3D vision extraction approach reveals an altimetric precision of ~3-4 m (LE68) on the ablation area of the Penny Ice Cap. On the Barnes Ice Cap, elevation changes calculated relative to the oldest digital elevation models available allows to calculate an historical specific mass balance (1960-2013) of -0,49 ± 0,20 m w.e./year, resulting in a total annual mass balance of -2,9 Gt/year. Between 2005 and 2013, the specific mass balance of this ice cap increases to -1,20 ± 0,86 m w.e./year, which equals to a total annual mass balance f -7 Gt/year. On Penny Ice Cap’s ablation area, an average elevation change of -0,59 m/year is measured between 1958 and 2012. As also suggested in the literature, the recent melt acceleration is highly linked to warmer summer temperatures. Methodological and technical aspects are also presented and analyzed. No penetration depth (C band) is perceived on elevations derived from late ablation season images (late September/beginning of October), while a penetration of ~2,5-3 m is measured from images acquired in late October/beginning of November (freeze period). Our results also suggest the superiority and better consistency of the rational function model for geometrical correction of wide ultra-fine mode RADARSAT-2 images, compared to the hybrid Toutin’s model. Because of its all-weather functionality, its possible use without any ground control point and the simplicity and facility of its treatment, the RADARSAT-2 SRG represents a really good technology for glacier monitoring in regions affected by serious operational constraints.