Amélioration des estimations hydrométriques dérivées des données altimétriques satellitaires acquises sur des étendues d’eau continentales soumises à l’englacement

Les eaux douces continentales constituent l’une des composantes principales du cycle de l’eau. Elles assurent sa continuité à travers des échanges de flux d’eau et d’énergie avec ses différentes composantes. De nombreux plans d’eau douce (lacs, rivières, réservoirs, etc.) se retrouvent dans les régi...

Full description

Bibliographic Details
Main Author: Ziyad, Jawad
Other Authors: Goïta, Kalifa, Magagi, Ramata
Format: Doctoral or Postdoctoral Thesis
Language:French
English
Published: Université de Sherbrooke 2022
Subjects:
Online Access:http://hdl.handle.net/11143/19191
Description
Summary:Les eaux douces continentales constituent l’une des composantes principales du cycle de l’eau. Elles assurent sa continuité à travers des échanges de flux d’eau et d’énergie avec ses différentes composantes. De nombreux plans d’eau douce (lacs, rivières, réservoirs, etc.) se retrouvent dans les régions situées dans les hautes latitudes nord, où la cryosphère est dominante. L’une des particularités de ces plans d’eau est la congélation partielle ou complète pendant les saisons froides. De plus, ils ont une grande sensibilité aux changements climatiques. En effet, les variations spatio-temporelles du climat aux échelles régionales et locales affectent grandement l’hydrologie de ces plans d’eau en termes de niveau d’eau et de débit. D’où l’intérêt de disposer d’outils simples et efficaces pour surveiller et gérer ces ressources. L’inaccessibilité aux plans d’eau isolés et l’effet de la glace sur la qualité des mesures des niveaux d’eau à l’échelle des stations limnimétriques rendent la surveillance de la variation des niveaux d’eau difficiles. Compte tenu de sa couverture spatio-temporelle, de sa période de répétitivité, et des bandes de fréquence utilisées, l’altimétrie radar par satellite pourrait être une meilleure alternative pour surmonter les limites liées aux mesures in situ. Cependant, la présence de cibles hétérogènes, comme les couverts de glace, présente un défi majeur pour exploiter les données des niveaux d’eau dérivées de la technologie par satellite altimétrique au-dessus des plans d’eau couverts de glace. Cette étude a pour ultime objectif d’améliorer les estimations des niveaux d’eau dérivées de l’altimétrie radar par satellite sur des étendues d’eau continentales couvertes de glace. L’étude s’applique à étudier le potentiel de deux satellites altimétriques, Jason-2 et SARAL/Altika, possédant des caractéristiques technologiques différentes, à suivre les variations des niveaux d’eau des étendues d’eau soumises à l’englacement sur le territoire canadien. Le premier objectif spécifique de cette étude concerne l’analyse de la capacité des algorithmes de retraitements utilisés par les missions Jason-2 et SARAL/Altika à estimer les niveaux d’eau sur vingt étendues d’eau couvertes de glace au Canada. Cette analyse est effectuée sur les produits dérivés des algorithmes de retraitement et sur les mesures in situ pendant deux périodes : la période de recouvrement des satellites Jason-2 et SARAL/Altika, comprise entre 2008 et 2016, et les périodes des variations saisonnières de l’état de surface. Les résultats montrent que pour Jason-2, c’est l’algorithme de seuillage ICE-1 qui fournit les meilleures estimations de niveau d’eau, avec des erreurs RMSE non biaisées (unRMSE) ≤ 0,3 m et des r ≥ 0,8 pour 90 % des étendues d’eau. Pour ce qui est de SARAL/Altika, la majorité des algorithmes de retraitement utilisés donnent des résultats très comparables aux observations in situ, démontrant les bonnes performances de la technologie SARAL. Cependant, les algorithmes de retraitement utilisés par les deux satellites Jason-2 et SARAL/Altika fournissent des précisions faibles pendant les périodes marquées par le mélange eau-glace, c’est-à-dire les périodes de gel et de dégel. Le deuxième objectif spécifique est d’améliorer les estimations des niveaux d’eau issues du satellite Jason-2 pendant les périodes de gel et de dégel. Une approche de détection automatique est proposée afin de discriminer les points de mesure de l’eau libre, de la glace pure et de la glace partielle sur quatre plans d’eau couverts de glace : le Grand Lac des Esclaves, le lac Athabasca, le lac Winnipeg, et le lac des Bois. Cette approche se base sur l’intégration des données actives et passives du satellite Jason-2 dans un processus de clustering afin de définir les clusters correspondant à chaque état de surface. L’application du seuil de détection du cluster de l’eau libre a permis d'améliorer la qualité des mesures de niveau d'eau pendant les périodes de gel et de dégel. Les résultats montrent que le coefficient de corrélation r est amélioré d’environ 0,8 à plus de 0,9 avec des biais inférieurs à 20 cm. Le troisième objectif spécifique évalue le potentiel de l’approche de détection automatique des points de mesures développé dans l’objectif 2, avec les données du satellite SARAL/Altika. Dans cette partie, les données actives et passives dérivées du satellite SARAL/Altika ont été exploitées pour concevoir les seuils de discrimination de chaque état de surface (eau libre, glace pure, glace partielle de gel et dégel) sur les mêmes quatre plans d’eau étudiés. L’application du seuil de l’eau libre offre une amélioration de la qualité des mesures de niveau de l’eau avec une amélioration des corrélations r d’environ 0,8 à plus de 0,92 avec des biais inférieurs à 10 cm. Le quatrième objectif spécifique met en place une approche de classification des formes d’onde selon la nature et l’état de surface pendant les périodes de gel et de dégel pour les satellites altimétriques Jason-2 et SARAL/Altika. Le site d’étude considéré pour le développement de cette approche est le Grand Lac des Esclaves. Un processus de classification non supervisée basé sur les paramètres des formes d’onde et les résultats des interprétations des données altimétriques et radiométriques sur l’état de surface a été utilisé avant de développer l’approche de classification supervisée des formes d’onde pour Jason-2 et SARAL/Altika, nommée le modèle entrainé de classification - Classification Trained Model (CTM). Les modèles supervisés du K-plus proche voisin (KNN, K-Nearest Neighbour) et de machine à vecteurs de support (SVM, Support Vector Machine) ont été évalués pour cette conception. Le modèle basé sur l’approche SVM a produit les meilleurs résultats, présentant une précision globale (Overall Accuracy) de l’ordre de 92 % avec Jason-2 et de 98 % avec SARAL/Altika. Ce modèle développé est utilisé pour classifier l’ensemble des formes d’onde en fonction de l’état de surface du plan d’eau étudié. Les résultats ont été superposés à des produits Moderate Resolution Imaging Spectroradiometer (MODIS) pour une évaluation qualitative et semi-quantitative. Abstract : The continental freshwater is one of the main components of the water cycle. These resouces ensure its continuity through the exchange of water and energy fluxes with the different components of the water cycle. Most of the continental water bodies (lakes, rivers, reservoirs, etc.) are in the northern high latitudes, dominated by the cryosphere. These water bodies froze completely or partly during cold seasons. In addition, they have a high sensitivity to climate change. Climate variations at the local and global scales may affect the hydrological regime (water level and flow) of these water bodies. Hence the interest in having a simple and efficient tools to monitor changes of these resources. The gauging stations could not provide good measurements of water level due to the limited accessibility of isolated water bodies, and the potential contamination of measured data by ice. Satellite radar altimetry appears as a good alternative to overcome these limitations given its spatiotemporal coverage, its ground track repetitivity period, and the frequency bands used. However, the presence of heterogeneous targets within the altimeter footprint, such as ice cover, remains a major challenge to estimate water levels over ice-covered water bodies. The aim of this study is to improve the estimations of water levels obtained from spatial radar altimetry over ice-covered water bodies. This study investigates the potential of the two satellites altimetry Jason-2 and SARAL/Altika with different characteristics to monitor water-level changes over ice-covered water bodies in the Canadian territory. The first objective of this study is to analyze the potential of Jason-2 and SARAL/Altika retracking algorithms to retrieve water levels from altimeter measurements acquired over 20 ice-covered water bodies across Canada. In this analysis, products derived from retracking algorithms were compared with in situ measurements during two periods: (1) the time series considered for each satellite (2008–2016 for Jason-2, and 2013–2016 for SARAL/Altika); and (2) the freeze-thaw periods included in each time series. The results showed that retracking ICE-1 (used with Jason-2 data) provided better water level accuracy for 90% of the studied water bodies (r ≥ 0.8, unbiased RMSE ≤ 0.3 m). All the retracking algorithms used by SARAL/Altika provided results that are comparable to in situ observations, thus denoting the good performance of the SARAL technology. However, all retracking algorithms used by Jason-2 and SARAL/Altika provide low accuracy during freeze-up and thaw periods. The second objective attempts to improve the measurements of water levels obtained by Jason-2 data during freeze and thaw periods. Here, an automatic approach is proposed to identify the Jason-2 altimetry measurements corresponding to open water, ice, and transition (water ice) over four Canadian lakes: Great Slave Lake, Lake Athabasca, Lake Winnipeg, and Lake of the Woods. This approach is based on the integration of backscatter coefficients and peakiness at Ku-band and brightness temperature observations obtained from Jason-2 data in a clustering process to define the clusters and threshold of each surface state. The use of open water threshold improves the quality of water-level estimation over the four lakes during freeze-up and thaw periods. The results show that the coefficient of correlation (r) increased in average from about 0.8 without the use of the thresholds to more than 0.90, with unbiased RMSE errors less than 20 cm. The third objective evaluates the efficiency of the automatic approach proposed in the second objective, with SARAL/Altika data. In this section, active and passive observations derived from SARAL/Altika data were used to design the thresholds of each state surface (open water, pure ice, ice freeze-up, and ice break-up) over the same four studied water bodies. The application of open water threshold improved the quality of water levels measurements from r ~ 0.8 to r more than 0.92 with unbiased RMSE less than 10 cm. The fourth objective proposes a new approach for classifying waveforms data derived from Jason-2 and SARAL/Altika satellite missions during freeze-up and thaw periods based on the surface state over ice-covered water bodies. The considered study area for the development of this approach is Great Slave Lake. An unsupervised classification process based on waveform parameters and the results of interpretations of active and passive data was used before developing the supervised classification approach for Jason-2 and SARAL/Altika, named Classification Trained Model (CTM). K-nearest neighbor (KNN) and support vector machine (SVM) models were evaluated for this concept. The SVM-based model provided the best results (accuracy of 92% with Jason-2, and 98% with SARAL/Altika). It was used to classify all waveforms of the studied water body. Results were superimposed to MODIS products for qualitative visual and semi-quantitative assessments.