A climatic control on the accretion of meteoric and super-chondritic iridium–platinum to the Antarctic ice cap

International audience Meteoric smoke particles (MSPs) form through the vaporization of meteoroids and the subsequent re-condensation of metallic species in the mesosphere. Recently, iridium and platinum enrichments have been identified in Greenland ice layers and attributed to the fallout of MSPs s...

Full description

Bibliographic Details
Published in:Earth and Planetary Science Letters
Main Authors: Gabrielli, Paolo, M.C. Plane, John, F. Boutron, Claude, Hong, Sungmin, Cozzi, Giulio, Cescon, Paolo, Ferrari, Christophe, P., J. Crutzen, Paul, Robert Petit, Jean, Y. Lipenkov, Vladimir, Barbante, Carlo
Other Authors: Institute for the Dynamics of Environmental Processes-CNR, University of Ca’ Foscari Venice, Italy, Laboratoire de glaciologie et géophysique de l'environnement (LGGE), Observatoire des Sciences de l'Univers de Grenoble (OSUG), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), School of Chemistry Leeds, University of Leeds, Unité de Formation et de Recherche de Physique, Université Joseph Fourier - Grenoble 1 (UJF), Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Institut national des sciences de l'Univers (INSU - CNRS)-Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA)-Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS), Korean Ocean Research and Development Institute (KORDI), Environmental Sciences Department, Polytech Grenoble, Max Planck Institute for Chemistry (MPIC), Max-Planck-Gesellschaft, Arctic and Antarctic Research Institute (AARI), Russian Federal Service for Hydrometeorology and Environmental Monitoring (Roshydromet), European Project for Ice Coring in Antarctica (EPICA)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2006
Subjects:
ice
Online Access:https://insu.hal.science/insu-00375474
https://doi.org/10.1016/j.epsl.2006.08.015
Description
Summary:International audience Meteoric smoke particles (MSPs) form through the vaporization of meteoroids and the subsequent re-condensation of metallic species in the mesosphere. Recently, iridium and platinum enrichments have been identified in Greenland ice layers and attributed to the fallout of MSPs supplying polar latitudes with cosmic matter during the Holocene. However, the MSP fallout to Antarctica during the Earth's climatic history remains essentially unknown. We have determined iridium and platinum in deep Antarctic ice from Dome C and Vostok dated back to 240 kyrs BP. We find high super-chondritic fluxes during warm periods and low meteoric accretion during glacial times, a pattern that is opposite to any known climatic variation in dust fallout to polar regions. The proposed explanation of this accretion regime is a weaker polar vortex during warm periods, allowing peripheral air masses enriched in volcanic iridium and platinum to penetrate inland to Antarctica. The MSP signal emerges only during cold phases and is four times lower than in the Greenland ice cap where more snow accumulates. This suggests that wet deposition is an important route of cosmic material to the Earth's surface.