Ice Aprons in the Mont Blanc Massif (Western European Alps): Topographic Characteristics and Relations with Glaciers and Other Types of Perennial Surface Ice Features

International audience Ice aprons are poorly studied and not well-defined thin ice bodies adhering to high altitude steep rock faces, but are present in most Alpine-type high mountain environments worldwide. This study aims to precisely define ice aprons based on a detailed analysis of their topogra...

Full description

Bibliographic Details
Published in:Remote Sensing
Main Authors: Kaushik, Suvrat, Ravanel, Ludovic, Magnin, Florence, Trouvé, Emmanuel, Yan, Yajing
Other Authors: Environnements, Dynamiques et Territoires de Montagne (EDYTEM), Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry )-Centre National de la Recherche Scientifique (CNRS), Laboratoire d'Informatique, Systèmes, Traitement de l'Information et de la Connaissance (LISTIC), Université Savoie Mont Blanc (USMB Université de Savoie Université de Chambéry ), University of Oslo (UiO), ANR-19-CE01-0018,WISPER,Processus thermo-mécaniques liés à l'eau et à la glace dans les fractures des parois alpines à permafrost(2019)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2022
Subjects:
Ice
Online Access:https://hal.science/hal-03841491
https://hal.science/hal-03841491/document
https://hal.science/hal-03841491/file/2022_Kaushik_remotesensing-14-05557-v3.pdf
https://doi.org/10.3390/rs14215557
Description
Summary:International audience Ice aprons are poorly studied and not well-defined thin ice bodies adhering to high altitude steep rock faces, but are present in most Alpine-type high mountain environments worldwide. This study aims to precisely define ice aprons based on a detailed analysis of their topographical characteristics in the Mont Blanc massif (western European Alps). For this, we accurately identified and precisely mapped 423 ice aprons using a combination of high-resolution optical satellite images from 2019. To better understand their relationship with other types of glaciers, especially the steep slope glaciers and other surface ice bodies, we built a detailed inventory at the scale of the massif that incorporates nine different types of perennial surface ice bodies. In addition, an analysis using different topographic factors helped us to better understand the preferred locations of the ice aprons. We show that they predominantly occur on west-oriented steep and topographically rugged rock slopes above the local Equilibrium Line Altitude (~3200 m a.s.l.), with concave profile curvatures around them that facilitate snow accumulation. They are also found in areas underlain by permafrost. The extensive inventory also helped us to identify different types of ice aprons based on their relationships with glaciers/ice bodies. The analysis shows that ice aprons existing at the headwall of large glaciers above a bergschrund are the most dominant ice apron type in the study area, with ~82% of the total.