Composition of cetacean communities worldwide shapes their contribution to ocean nutrient cycling

International audience Defecation by large whales is known to fertilise oceans with nutrients, stimulating phytoplankton and ecosystem productivity. However, our current understanding of these processes is limited to a few species, nutrients and ecosystems. Here, we investigate the role of cetacean...

Full description

Bibliographic Details
Published in:Nature Communications
Main Authors: Gilbert, Lola, Jeanniard-Du-Dot, Tiphaine, Authier, Matthieu, Chouvelon, Tiphaine, Spitz, Jérôme
Other Authors: Centre d'Études Biologiques de Chizé - UMR 7372 (CEBC), La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Observatoire pour la Conservation de la Mégafaune Marine (PELAGIS), LIttoral ENvironnement et Sociétés (LIENSs), La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS)-La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS), Unité Contamination Chimique des Ecosystèmes Marins (CCEM), Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2023
Subjects:
Online Access:https://hal.science/hal-04222776
https://hal.science/hal-04222776/document
https://hal.science/hal-04222776/file/GNC14_2023.pdf
https://doi.org/10.1038/s41467-023-41532-y
Description
Summary:International audience Defecation by large whales is known to fertilise oceans with nutrients, stimulating phytoplankton and ecosystem productivity. However, our current understanding of these processes is limited to a few species, nutrients and ecosystems. Here, we investigate the role of cetacean communities in the worldwide biological cycling of two major nutrients and six trace nutrients. We show that cetaceans release more nutrients in mesotrophic to eutrophic temperate waters than in oligotrophic tropical waters, mirroring patterns of ecosystem productivity. The released nutrient cocktails also vary geographically, driven by the composition of cetacean communities. The roles of small cetaceans, deep diving cetaceans and baleen whales differ quantitatively and functionally, with contributions of small cetaceans and deep divers exceeding those of large whales in some areas. The functional diversity of cetacean communities expands beyond their role as top predators to include their role as active nutrient vectors, which might be equally important to local ecosystem dynamics.