The control of Novozym® 435 chemoselectivity and specificity by the solvents in acylation reactions of amino-alcohols

International audience The current work describes the differential behaviour of Novozym® 435 (immobilized Candida antarctica lipase B) in O-acylation and N-acylation catalysis of bifunctional amino-alcohols acyl acceptors. We performed acylation experiments on three amino-alcohols (alaninol, 4-amino...

Full description

Bibliographic Details
Published in:Journal of Molecular Catalysis B: Enzymatic
Main Authors: Le Joubioux, Florian, Bridiau, Nicolas, Ben Henda, Yesmine, Achour, Oussama, Graber, Marianne, Maugard, Thierry
Other Authors: LIttoral ENvironnement et Sociétés (LIENSs), La Rochelle Université (ULR)-Centre National de la Recherche Scientifique (CNRS), ANR Expenantio, ANR-08-CP2D-0010,EXPENANTIO,Vers une voie durable pour la synthèse de molécules chirales: approches expérimentales et théoriques innovantes pour la compréhension des bases moléculaires de l'énantiosélectivité des lipases et des estérases - Towards green synthesis of chiral molecules(2008)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2013
Subjects:
Online Access:https://hal.science/hal-01070399
https://hal.science/hal-01070399/document
https://hal.science/hal-01070399/file/Florian3_HAL.pdf
https://doi.org/10.1016/j.molcatb.2013.06.002
Description
Summary:International audience The current work describes the differential behaviour of Novozym® 435 (immobilized Candida antarctica lipase B) in O-acylation and N-acylation catalysis of bifunctional amino-alcohols acyl acceptors. We performed acylation experiments on three amino-alcohols (alaninol, 4-amino-1-pentanol and 6-amino- 1-hexanol) using myristic acid as an acyl donor. Two organic solvents (tert-amyl alcohol and n-hexane) and one ionic liquid (1-butyl-3-methylimidazolium hexafluorophosphate: Bmim [PF6]) were used to determine the effect of the solvent. The influence of the amino-alcohol carbon chain length between the alcohol and amino groups on chemoselectivity C (kcat,app O-acylation/kcat,app N-acylation) was highlighted. N-acylation is improved using alaninol, a short chain amino-alcohol (no mono-O-acylation in tert-amyl alcohol and C = 0.12 in n-hexane) whereas O-acylation is improved using 4-amino-1-pentanol and 6- amino-1-hexanol which are amino-alcohols with longer chain (C = 10.5 in tert-amyl alcohol and C = 539 in n-hexane). On the other hand, the production of the acylated amino-alcohols after 96 h of reaction was shown to be strongly affected by the solvent nature and the amino-alcohol structure: starting from alaninol as an acyl acceptor, the yield of amide synthesis reaches up to 98% in tert-amyl alcohol using 0.7 equivalents of myristic acid while the yield of amido-ester synthesis reaches up to 88% in Bmim [PF6] using 1.75 equivalents of myristic acid.