Is the life cycle of high arctic aphids adapted to climate change?

International audience The high arctic aphid Acyrthosiphon svalbardicum Heikinheimo is endemic to Svalbard and has developed a shortened life cycle to cope with harsh environmental conditions prevailing in this archipelago. Previous studies in the 1990s showed that contrarily to Sitobion calvulum, a...

Full description

Bibliographic Details
Published in:Polar Biology
Main Authors: Hulle, Maurice, Bonhomme, Joel, Maurice, Damien, Simon, Jean-Christophe
Other Authors: Biologie des organismes et des populations appliquées à la protection des plantes (BIO3P), Institut National de la Recherche Agronomique (INRA)-Université de Rennes (UR)-AGROCAMPUS OUEST, Ecologie et Ecophysiologie Forestières devient SILVA en 2018 (EEF), Institut National de la Recherche Agronomique (INRA)-Université de Lorraine (UL)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2008
Subjects:
Online Access:https://hal.inrae.fr/hal-02659919
https://doi.org/10.1007/s00300-008-0442-z
Description
Summary:International audience The high arctic aphid Acyrthosiphon svalbardicum Heikinheimo is endemic to Svalbard and has developed a shortened life cycle to cope with harsh environmental conditions prevailing in this archipelago. Previous studies in the 1990s showed that contrarily to Sitobion calvulum, a species which is also restricted to Svalbard and displays a two-generation life cycle, A. svalbardicum can produce a third generation that, on average, should complete its development and reproduction once every 28 years. Because temperature has risen substantially in Svalbard during the past 10 –15 years and is predicted to rise further, budget requirements for this extra-generation should be met more and more frequently and the impact of the resulting demographic increase should be easily measurable in field populations of A. svalbardicum. Here, we tested this hypothesis by performing a series of experiments designed to study population dynamics and morph production of A. svalbardicum. Surprisingly, the three-generation life cycle was not detected either in field populations surveyed for two consecutive years or in controlled conditions where temperature was manipulated. Although we cannot reject the possibility that A. svalbardicum populations may develop a three-generation life cycle under certain circumstances, this strategy seems very rare and not adaptive as it would have been selected in the recent years of warming observed in Svalbard.