Upper Darriwilian (Middle Ordovician) Radiolarians and Ostracods from the Hulo Formation, Zhejiang Provicnce, South China

Considerable research has been done on the Ordovician marine fossils from South China, including macrofossils such as brachiopods, graptolites, bivalves, trilobites, some microfossils like conodonts and acritarches. However, radiolarians and ostracods that are also important constituents of the Ordo...

Full description

Bibliographic Details
Published in:Journal of Earth Science
Main Authors: Yi, Yuhao, Yuan, Aihua, Aitchison, Jonathan C., Feng, Qinglai
Format: Article in Journal/Newspaper
Language:English
Published: Zhongguo Dizhi Daxue 2018
Subjects:
Online Access:https://espace.library.uq.edu.au/view/UQ:e594316
Description
Summary:Considerable research has been done on the Ordovician marine fossils from South China, including macrofossils such as brachiopods, graptolites, bivalves, trilobites, some microfossils like conodonts and acritarches. However, radiolarians and ostracods that are also important constituents of the Ordovician marine ecosystem have been paid little attention in this region. In this study, ten radiolarians species belonging to four genera and sixteen ostracods species grouped into nine genera were found from the Hulo Formation at the Hengdu Section of the Jiangshan District, western Zhejiang Province, South China. The fossil-bearing strata belong to the graptolite Pterograptus elegans Zone which indicates the Late Darriwilian Age. This radiolarian fauna is the first record of the Middle Ordovician radiolarian body fossils and also the earliest Ordovician radiolarian fauna reported from South China. The occurrence of Beothuka in this fauna extends the stratigraphic range of the genus to the Upper Darriwilian. Reviews of previous literatures suggest that the diversity of Beothuka was greater during the Early Ordovician, and then declined gradually from the Early Ordovician to the Middle Ordovician before its extinction. The co-occurring ostracod fauna belongs to a shallow-water ecotype. This is contrary to the host lithofacies of the ostracod fauna which represent a deep-water environment. Therefore, these ostacods may have been transported from the shallow-water environment, most likely from the Yangtze carbonate platform. If this conjecture is the truth, then the Jiangshan District was near the shallow-water carbonate platform and received its sediments during the Darriwilian. It is still essential to do more work in the future to better understand the ecology of the Ordovician ostracod fanuas and their role in the sedimentary system of South China.