Genetic structure of the world's polar bear populations

We studied genetic structure in polar bear (Ursus maritimus) populations by typing a sample of 473 individuals spanning the species distribution at 16 highly variable microsatellite loci. No genetic discontinuities were found that would be consistent with evolutionarily significant periods of isolat...

Full description

Bibliographic Details
Published in:Molecular Ecology
Main Authors: Paetkau, D., Amstrup, S. C., Born, E. W., Calvert, W., Derocher, A. E., Garner, G. W., Messier, F., Stirling, I., Taylor, M. K., Wiig, Strobeck, C.
Format: Article in Journal/Newspaper
Language:English
Published: 1999
Subjects:
Online Access:https://espace.library.uq.edu.au/view/UQ:4a7fb39
Description
Summary:We studied genetic structure in polar bear (Ursus maritimus) populations by typing a sample of 473 individuals spanning the species distribution at 16 highly variable microsatellite loci. No genetic discontinuities were found that would be consistent with evolutionarily significant periods of isolation between groups. Direct comparison of movement data and genetic data from the Canadian Arctic revealed a highly significant correlation. Genetic data generally supported existing population (management unit) designations, although there were two cases where genetic data failed to differentiate between pairs of populations previously resolved by movement data. A sharp contrast was found between the minimal genetic structure observed among populations surrounding the polar basin and the presence of several marked genetic discontinuities in the Canadian Arctic. The discontinuities in the Canadian Arctic caused the appearance of four genetic clusters of polar bear populations. These clusters vary in total estimated population size from 100 to over 10 000, and the smallest may merit a relatively conservative management strategy in consideration of its apparent isolation. We suggest that the observed pattern of genetic discontinuities has developed in response to differences in the seasonal distribution and pattern of sea ice habitat and the effects of these differences on the distribution and abundance of seals.