Catecholamine release in heat-stressed Antarctic fish causes proton extrusion by the red cells

Two species of Antarctic fish were stressed by moving them from seawater at -1 degrees C to seawater at 10 degrees C and holding them for a period of 10 min. The active cryopelagic species Pagothenia borchgrevinki maintained heart rate while in the benthic species Trematomus bernacchii there was an...

Full description

Bibliographic Details
Published in:Journal of Comparative Physiology B: Biochemical, Systemic, and Environmental Physiology
Main Authors: Forster, ME, Davison, W, Axelsson, M, Sundin, L, Franklin, CE, Gieseg, S
Format: Article in Journal/Newspaper
Language:English
Published: SPRINGER VERLAG 1998
Subjects:
Online Access:https://espace.library.uq.edu.au/view/UQ:35002
Description
Summary:Two species of Antarctic fish were stressed by moving them from seawater at -1 degrees C to seawater at 10 degrees C and holding them for a period of 10 min. The active cryopelagic species Pagothenia borchgrevinki maintained heart rate while in the benthic species Trematomus bernacchii there was an increase in heart rate. Blood pressure did not change in either species. Both species released catecholamines into the circulation as a consequence of the stress. P. borchgrevinki released the greater amounts, having mean plasma concentrations of 177 +/- 54 nmol.l(-1) noradrenaline and 263 +/- 131 nmol.l(-1) adrenaline at 10 min. Pla.sma noradrenaline concentrations rose to 47 +/- 14 nmol.l(-1) and adrenaline to 73 +/- 28 nmol.l(-1) in T. bernacchii. Blood from P. borchgrevinki was tonometered in the presence of isoprenaline. A fall in extracellular pH suggests the presence of a Na+/H+ antiporter on the red cell membrane, the first demonstration of this in an Antarctic fish. Treatment with the beta-adrenergic antagonist drug sotalol inhibited swelling of red blood cells taken from temperature-stressed P. borchgrevinki, suggesting that the antiporter responds to endogenous catecholamines.