Formation and evolution of the ionospheric plasma density shoulder and its relationship to the superfountain effects investigated during the 6 November 2001 great storm

This study investigates the 6 November 2001 great storm’s impact on the topside ionosphere utilizing data from the onboard TOPEX/Poseidon-NASA altimeter, Defense Meteorological Satellite Program–Special Sensor Ions, Electrons and Scintillation instruments and ACE interplanetary observatory. A set of...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Space Physics
Main Authors: Horvath, Ildiko, Lovell, Brian C.
Format: Article in Journal/Newspaper
Language:English
Published: American Geophysical Union 2008
Subjects:
C1
Online Access:https://espace.library.uq.edu.au/view/UQ:177326/Horvath-Lovell-2008.pdf
https://espace.library.uq.edu.au/view/UQ:177326
Description
Summary:This study investigates the 6 November 2001 great storm’s impact on the topside ionosphere utilizing data from the onboard TOPEX/Poseidon-NASA altimeter, Defense Meteorological Satellite Program–Special Sensor Ions, Electrons and Scintillation instruments and ACE interplanetary observatory. A set of field-aligned profiles demonstrate the storm evolution, caused by the precursor and promptly penetrating interplanetary eastward electric (E) fields, and strong equatorward winds reducing chemical loss, during the long-duration negative BZ events. At daytime-evening, the forward fountain experienced repeated strengthening, as the net eastward E field suddenly increased. The resultant symmetrical equatorial anomaly exhibited a continuous increase,while the energy inputs at both auroral regions were similar. In both hemispheres, by progressing poleward, a midlatitude shoulder exhibiting increased plasma densities, a plasma-density dropoff (steep gradient) and a plasma depletion appeared. These features were maintained while the reverse fountain operated. At the dropoff, elevated temperatures indicated the plasmapause. Consequently, the plasma depletion was the signature of plasmaspheric erosion. In each hemisphere, an isolated plasma flow, supplying the minimum plasma, was detected at the shoulder. Plasmaspheric compression, due to the enhanced E fields, could trigger this plasma flow. Exhibiting strong longitudinal variation at evening-nighttime, the shoulder increased 306% over the southeastern Pacific, where the nighttime Weddell Sea Anomaly (WSA) appeared before the storm. There, the shoulder indicated the storm-enhanced equatorward section of the quiet time WSA. Owing to the substantial equatorward plasmapause movement, a larger poleward section of the quiet time WSA eroded away, leaving a large depletion behind. This study reports first these (northern, southern) plasma flows and dramatic storm effects on a nighttime WSA.