GPS and GLONASS Static and Kinematic PPP results

Precise point positioning (PPP) involves observations from a single global navigation satellite system (GNSS) receiver and benefits of satellite orbit and clock products obtained from the global infrastructure of permanent stations. PPP avoids the expense and logistic difficulties of deploying a net...

Full description

Bibliographic Details
Published in:Journal of Surveying Engineering
Main Authors: Anquela Julián, Ana Belén, Martín Furones, Ángel Esteban, Berné Valero, José Luis, Padin Devesa, Jorge
Other Authors: Universitat Politècnica de València. Departamento de Ingeniería Cartográfica Geodesia y Fotogrametría - Departament d'Enginyeria Cartogràfica, Geodèsia i Fotogrametria, Ministerio de Ciencia e Innovación
Format: Article in Journal/Newspaper
Language:English
Published: American Society of Civil Engineers 2013
Subjects:
Online Access:http://hdl.handle.net/10251/62456
https://doi.org/10.1061/(ASCE)SU.1943-5428.0000091
Description
Summary:Precise point positioning (PPP) involves observations from a single global navigation satellite system (GNSS) receiver and benefits of satellite orbit and clock products obtained from the global infrastructure of permanent stations. PPP avoids the expense and logistic difficulties of deploying a network of GNSS receivers around survey areas in isolated places, such as the arctic or less populated areas. Potential accuracies are at the centimeter level for static applications and at the subdecimeter level for kinematic applications. Static and kinematic PPP based on the processing of global positioning system (GPS) observations is limited by the number of visible satellites, which is often insufficient for urban or mountain applications, or it can be partially obstructed or present multipath effects. Even if a number of GPS satellites are available, the accuracy and reliability can still be affected by poor satellite geometry. One possible way of increasing satellite signal availability and positioning reliability is to integrate GPS and GLONASS observations. This case study deals with the possibilities of combining GPS and GLONASS dual-frequency measurements on the static and kinematic PPP solution to reduce the convergence time and improve the accuracy of the solution. The results show that the addition of the GLONASS constellation does not always improve the convergence of static PPP; the kinematic results (car and walk trajectories) present better accuracy from the GPS1GLONASS solution rather than the GPS-only solution. The MagicGNSS software was used in processing of all observations This research is supported by Spanish Science and Innovation Directorate Project No. AYA2010-18706. The authors greatly appreciate the efforts of the IGS, Analysis and Data Centers, and tracking station managers for generating high-quality data and products and for making them available to the GNSS community in a timely and reliable way. The authors would like to thank Alvaro Mozo and Ricardo Piriz from GMV Aerospace for the ...