Molecular and morphological assessment of invasive, inland Rattus (Rodentia: Muridae) congenerics in South Africa and their reservoir host potential with respect to Helicobacter and Bartonella

Invasive species are generally problematic where they occur, especially in terms of ecology, economy and disease. Members of the genus Rattus Fischer, 1803 particularly, are known as one of the most destructive invasive species to date since they cause widespread damage on terrestrial and island eco...

Full description

Bibliographic Details
Main Author: Mostert, Maria Elizabeth
Other Authors: Bastos, Armanda D.S.
Format: Doctoral or Postdoctoral Thesis
Language:unknown
Published: University of Pretoria 2013
Subjects:
Online Access:http://hdl.handle.net/2263/29390
http://upetd.up.ac.za/thesis/available/etd-11102010-192804/
Description
Summary:Invasive species are generally problematic where they occur, especially in terms of ecology, economy and disease. Members of the genus Rattus Fischer, 1803 particularly, are known as one of the most destructive invasive species to date since they cause widespread damage on terrestrial and island ecosystems. Two Rattus species have historically been reported as invasive species in South Africa, Rattus rattus Linnaeus, 1758, which has a widespread distribution throughout the country and Rattus norvegicus Berkenhout, 1769 which is primarily distributed along the coast of South Africa. A third species, Rattus tanezumi Temminck, 1844 (which forms part of the R. rattus species complex), a south-east Asian endemic, was first reported in 2005 to also occur in South Africa (and Africa). As this species is morphologically similar to R. rattus, its identification is reliant on molecular typing approaches. In the current study, molecular, morphological and disease aspects of South African Rattus were assessed. The nature and extent of variation between the three species was investigated using cytochrome b sequences and extensive mitochondrial d-loop database for comparative purposes. D-loop data identified one, four and two haplotypes for R. tanezumi, R. rattus and R. norvegicus, respectively whereas cytochrome b data identified additional haplotypes for R. rattus and R. tanezumi. Pairwise sequence divergence was highest between R. norvegicus and R. tanezumi (12.5% for D-loop and 12.0% for cyt b). Rattus norvegicus was recovered in the central parts of South Africa for the first time and occurred sympatrically with R. tanezumi at one locality, whereas Rattus rattus and R. tanezumi occurred sympatrically at three localities. The external and qualitative cranial morphology of all three species was compared in an attempt to find differences that could be used to morphologically differentiate between these Rattus species. Whereas R. norvegicus can easily be distinguished from R. rattus and R. tanezumi, there are no discernible ...