Internal Structure of Ariebreen, Spitsbergen, from radio-echo sounding data

Ariebreen (77º 01' N, 15º 29' E) is a small valley glacier (ca. 0.36 km2 in August 2007) located at Hornsund, Spitsbergen, Svalbard, ca. 2.5 km to the west of Hornsund Polish Polar Station. Ariebreen, like many other Svalbard glaciers, has experienced a significant recession at least since...

Full description

Bibliographic Details
Main Authors: Navarro Valero, Francisco José, Gabriec, M., Puczko, D., Jonsell, Ulf, Nawrot, A.
Format: Conference Object
Language:English
Published: E.T.S.I. Telecomunicación (UPM) 2008
Subjects:
Online Access:https://oa.upm.es/4393/
Description
Summary:Ariebreen (77º 01' N, 15º 29' E) is a small valley glacier (ca. 0.36 km2 in August 2007) located at Hornsund, Spitsbergen, Svalbard, ca. 2.5 km to the west of Hornsund Polish Polar Station. Ariebreen, like many other Svalbard glaciers, has experienced a significant recession at least since the 1930s, and most likely since the end of Little Ice Age (LIA) in the early part of the 20th century. Moreover, the thinning rate of western Svalbard glaciers has shown an acceleration during the most recent decades. Ariebreen follows this general retreat pattern, as is shown in another contribution to this workshop (Petlicki et al., 2008). Most investigated glaciers in Hornsund area, in the neighbourhood of Ariebreen, are known to be polythermal (e.g. Hansbreen and Werenskioldbreen, Pälli et al., 2003). It has been suggested (Macheret et al., 1992) that the thinning of polythermal glaciers may result in a switch to cold thermal structure under appropriate conditions. The strong thinning experienced by Ariebreen during the recent decades makes it an ideal candidate to undergo such change. The main aims of this contribution are to understand the internal structure of Ariebreen, in particular, its hydrothermal regime, and to determine whether the glacier is undergoing or has already experienced a transition from polythermal to cold structure. The main tool to accomplish this will be the analysis of radio-echo sounding data.