Deep sea sediments of the Arctic Central Basin: A potential sink for microplastics

© 2019 Elsevier Ltd Deep sea sediments have emerged as a potential sink for microplastics in the marine environment. The discovery of microplastics in various environmental compartments of the Arctic Central Basin (ACB) suggested that these contaminants were potentially being transported to the deep...

Full description

Bibliographic Details
Published in:Deep Sea Research Part I: Oceanographic Research Papers
Main Authors: Kanhai, LDK, Johansson, C, Frias, JPGL, Gardfeldt, K, Thompson, RC, O'Connor, I
Format: Article in Journal/Newspaper
Language:English
Published: Elsevier 2019
Subjects:
Online Access:http://hdl.handle.net/10026.1/13647
https://doi.org/10.1016/j.dsr.2019.03.003
Description
Summary:© 2019 Elsevier Ltd Deep sea sediments have emerged as a potential sink for microplastics in the marine environment. The discovery of microplastics in various environmental compartments of the Arctic Central Basin (ACB) suggested that these contaminants were potentially being transported to the deep-sea realm of this oceanic basin. For the first time, the present study conducted a preliminary assessment to determine whether microplastics were present in surficial sediments from the ACB. Gravity and piston corers were used to retrieve sediments from depths of 855–4353 m at 11 sites in the ACB during the Arctic Ocean 2016 (AO16) expedition. Surficial sediments from the various cores were subjected to density flotation with sodium tungstate dihydrate solution (Na 2 WO 4 ·2H 2 O, density 1.4 g cm −3 ). Potential microplastics were isolated and analysed by Fourier Transform Infrared (FT-IR) spectroscopy. Of the surficial samples, 7 of the 11 samples contained synthetic polymers which included polyester (n = 3), polystyrene (n = 2), polyacrylonitrile (n = 1), polypropylene (n = 1), polyvinyl chloride (n = 1) and polyamide (n = 1). Fibres (n = 5) and fragments (n = 4) were recorded in the samples. In order to avoid mis-interpretation, these findings must be taken in the context that (i) sampling equipment did not guarantee retrieval of undisturbed surficial sediments, (ii) low sample volumes were analysed (~10 g per site), (iii) replicate sediment samples per site was not possible, (iv) no air contamination checks were included during sampling and, (v) particles <100 µm were automatically excluded from analysis. While the present study provides preliminary indication that microplastics may be accumulating in the deep-sea realm of the ACB, further work is necessary to assess microplastic abundance, distribution and composition in surficial sediments of the ACB.