Modelling tidally induced larval dispersal over Anton Dohrn Seamount

© 2018, The Author(s). Massachusetts Institute of Technology general circulation model is used for the analysis of larval dispersal over Anton Dohrn Seamount (ADS), North Atlantic. The model output validated against the in situ data collected during the 136th cruise of the RRS ‘James Cook’ in May–Ju...

Full description

Bibliographic Details
Published in:Ocean Dynamics
Main Authors: Stashchuk, N, Vlasenko, V, Howell, KL
Format: Article in Journal/Newspaper
Language:English
Published: 2018
Subjects:
Online Access:http://hdl.handle.net/10026.1/12204
https://doi.org/10.1007/s10236-018-1206-0
Description
Summary:© 2018, The Author(s). Massachusetts Institute of Technology general circulation model is used for the analysis of larval dispersal over Anton Dohrn Seamount (ADS), North Atlantic. The model output validated against the in situ data collected during the 136th cruise of the RRS ‘James Cook’ in May–June 2016 allowed reconstruction of the details of the baroclinic tidal dynamics over ADS. The obtained velocities were used as input data for a Lagrangian-type passive particle tracking model to reproduce the larval dispersal of generic deep-sea water invertebrate species. It was found that the residual tidal flow over ADS has a form of a pair of dipoles and cyclonic and anti-cyclonic eddies located at the seamount periphery. In the vertical direction, tides form upward motions above the seamount summit. These currents control local larval dispersal and their escape from ADS. The model experiment with a large number of particles (7500) evenly seeded on the ADS surface has shown that the trajectory of every individual particle is sensitive to the initial position and the tidal phase where and when it is released. The vast majority of the particles released above 1000 m depth remain seated in the same depth band where they were initially released. Only 8% of passive larvae were able to remain in suspension until competent to settle (maximise dispersal capability) and settle (make contact with the bottom) within the specified limits for this model. It was found that every tenth larval particle could leave the seamount and had a chance to be advected to any other remotely located seamount.