Origin and interaction of mafic and felsic magmas in an evolving late orogenic setting: the early Paleozoic Terra Nova Intrusive Complex, Antarctica

The Abbott Unit (similar to 508 Ma) and the Vegetation Unit (similar to 475 Ma) of the Terra Nova Intrusive Complex (northern Victoria Land, Antarctica) represent the latest magmatic events related to the Early Paleozoic Ross Orogeny. They show different emplacement styles and depths, ranging from f...

Full description

Bibliographic Details
Main Authors: DI VINCENZO G., ROCCHI, SERGIO
Other Authors: DI VINCENZO, G., Rocchi, Sergio
Format: Article in Journal/Newspaper
Language:English
Published: 1999
Subjects:
Online Access:http://hdl.handle.net/11568/168615
Description
Summary:The Abbott Unit (similar to 508 Ma) and the Vegetation Unit (similar to 475 Ma) of the Terra Nova Intrusive Complex (northern Victoria Land, Antarctica) represent the latest magmatic events related to the Early Paleozoic Ross Orogeny. They show different emplacement styles and depths, ranging from forcible at 0.4-0.5 GPa for the Abbott Unit to passive at similar to 0.2 GPa for the Vegetation Unit. Both units consist of mafic, felsic and intermediate facies which collectively define continuous chemical trends. The most mafic rocks from both units show different enrichment in trace element and Sr-Nd isotopic signatures. Once the possible effects of upper crustal assimilation-fractional crystallisation (AFC) and lower crustal coupled AFC and magma refilling processes have been taken into account the following features are recognised: (1) the modelled primary Abbott Unit magma shows a slightly enriched incompatible element distribution, similar to common continental are basalts and (2) the modelled primary Vegetation Unit magma displays highly enriched isotope ratios and incompatible element patterns. We interpreted these major changes in magmatic affinity and emplacement style as linked to a major change in the tectonic setting affecting melt generation, rise and emplacement of the magmas. The Abbott Unit mafic melts were derived from a mantle wedge above a subduction zone, with subcontinental lithospheric mantle marginally involved in the melting column. The Vegetation Unit mafic melts are regarded as products of a different source involving an old layer of subcontinental lithospheric mantle. The crustal evolution of both types of mafic melts is marked by significant compositional contrasts in Sr and Nd isotopes between mafic and associated felsic rocks. The crustal isotope signature showed an increase with felsic character. Geochemical variations for both units can be accounted for by a similar two-stage hybridisation process. In the first stage, the most mafic magma evolved mainly by fractional crystallisation ...