Using Ice Cores to Evaluate CMIP6 Aerosol Concentrations Over the Historical Era

International audience The radiative effect of anthropogenic aerosols is one of the largest uncertainties in Earth's energy budget over the industrial period. This uncertainty is in part due to sparse observations of aerosol concentrations in the pre‐satellite era. To address this lack of measu...

Full description

Bibliographic Details
Published in:Journal of Geophysical Research: Atmospheres
Main Authors: Moseid, Kine Onsum, Schulz, Michael, Eichler, Anja, Schwikowski, Margit, Mcconnell, Joseph, R, Olivié, Dirk, Criscitiello, Alison, S, Kreutz, Karl, J, Legrand, Michel
Other Authors: Norwegian Meteorological Institute Oslo (MET), Paul Scherrer Institute (PSI), Desert Research Institute (DRI), University of Alberta, University of Maine, Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2022
Subjects:
Online Access:https://hal.science/hal-04264402
https://hal.science/hal-04264402/document
https://hal.science/hal-04264402/file/Moseid-2022JGR.pdf
https://doi.org/10.1029/2021JD036105
Description
Summary:International audience The radiative effect of anthropogenic aerosols is one of the largest uncertainties in Earth's energy budget over the industrial period. This uncertainty is in part due to sparse observations of aerosol concentrations in the pre‐satellite era. To address this lack of measurements, ice cores can be used, which contain the aerosol concentration record. To date, these observations have been under‐utilized for comparison to aerosol concentrations found in state‐of‐the‐art Earth system models (ESMs). Here we compare long term trends in concentrations of sulfate and black carbon (BC) between 15 ice cores and 11 ESMs over nine regions around the world during the period 1850–2000. We find that for sulfate concentration trends model results generally agree with ice core records, whereas for BC concentration the model trends differ from the records. Absolute concentrations of both investigated species are overestimated by the models, probably in part due to representation errors. However, we assume that biases in relative trends are not altered by these errors. Ice cores in the European Alps and Greenland record a maximum BC concentration before 1950, while most ESMs used in this study agree on a post‐1950 maximum. We source this bias to an error in BC emission inventories in Europe. Emission perturbation experiments using NorESM2‐LM support the observed finding that BC concentrations in Northern Greenland ice cores are recording European emissions. Errors in BC emission inventories have implications for all future and past studies where Coupled Model Intercomparison Project Phase 6 historical simulations are compared to observations relevant to aerosol forcing.