Consistent histories of anthropogenic western European air pollution preserved in different Alpine ice cores

International audience Individual high-Alpine ice cores have been proven to contain a well-preserved history of past anthropogenic air pollution in western Europe. The question of how representative one ice core is with respect to the reconstruction of atmospheric composition in the source region ha...

Full description

Bibliographic Details
Published in:The Cryosphere
Main Authors: Eichler, Anja, Legrand, Michel, Jenk, Theo, Preunkert, Susanne, Andersson, Camilla, Eckhardt, Sabine, Engardt, Magnuz, Plach, Andreas, Schwikowski, Margit
Other Authors: Paul Scherrer Institute (PSI), Institut des Géosciences de l’Environnement (IGE), Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP ), Université Grenoble Alpes (UGA), Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583)), Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Laboratoire Imagerie et Systèmes d'Acquisition (LISA), Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Swedish Meteorological and Hydrological Institute (SMHI), Norwegian Institute for Air Research (NILU), Environment and Health Administration, City of Stockholm, University of Vienna Vienna, Universität Bern / University of Bern (UNIBE), ANR-18-EBI4-0007,BioDiv-support,BioDiv-Support: Scenario-based decision support for policy planning and adaptation to future changes in biodiversity and ecosystem services(2018)
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2023
Subjects:
Online Access:https://hal.science/hal-04264393
https://hal.science/hal-04264393/document
https://hal.science/hal-04264393/file/tc-17-2119-2023.pdf
https://doi.org/10.5194/tc-17-2119-2023
Description
Summary:International audience Individual high-Alpine ice cores have been proven to contain a well-preserved history of past anthropogenic air pollution in western Europe. The question of how representative one ice core is with respect to the reconstruction of atmospheric composition in the source region has not been addressed so far. Here, we present the first study systematically comparing longer-term ice-core records (1750–2015 CE) of various anthropogenic compounds, such as major inorganic aerosol constituents (NH$^+_4$, NO$^-_3$, SO$_4^{2-}$), black carbon (BC), and trace species (Cd, F$^−$, Pb). Depending on the data availability for the different air pollutants, up to five ice cores from four high-Alpine sites located in the European Alps analysed by different laboratories were considered. Whereas absolute concentration levels can partly differ depending on the prevailing seasonal distribution of accumulated precipitation, all seven investigated anthropogenic compounds are in excellent agreement between the various sites for their respective, species-dependent longer-term concentration trends. This is related to common source regions of air pollution impacting the four sites less than 100 km away including western European countries surrounding the Alps. For individual compounds, the Alpine ice-core composites developed in this study allowed us to precisely time the onset of pollution caused by industrialization in western Europe. Extensive emissions from coal combustion and agriculture lead to an exceeding of pre-industrial (1750–1850) concentration levels already at the end of the 19th century for BC, Pb, exSO$_4^{2-}$ (non-dust, non-sea salt SO$_4^{2-}$), and NH$_4^+$, respectively. However, Cd, F$^−$, and NO$_3^-$ concentrations started surpassing pre-industrial values only in the 20th century, predominantly due to pollution from zinc and aluminium smelters and traffic. The observed maxima of BC, Cd, F$^−$, Pb, and exSO$_4^{2-}$ concentrations in the 20th century and a significant decline afterwards clearly ...