Hydrothermal 15N15N abundances constrain the origins of mantle nitrogen

International audience Nitrogen is the main constituent of the Earth's atmosphere, but its provenance in the Earth's mantle remains uncertain. The relative contribution of primordial nitrogen inherited during the Earth's accretion versus that subducted from the Earth's surface is...

Full description

Bibliographic Details
Published in:Nature
Main Authors: Labidi, J., Barry, P., Bekaert, D., Broadley, M., Marty, B., Giunta, T., Warr, O., Sherwood Lollar, B., Fischer, T., Avice, G., Caracausi, A., Ballentine, C., Halldórsson, S., Stefánsson, A., Kurz, M., Kohl, I., Young, E.
Other Authors: Department of Earth, Planetary and Space Sciences Los Angeles (EPSS), University of California Los Angeles (UCLA), University of California (UC)-University of California (UC), Woods Hole Oceanographic Institution (WHOI), Centre de Recherches Pétrographiques et Géochimiques (CRPG), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), University of Toronto, The University of New Mexico Albuquerque, Institut de Physique du Globe de Paris (IPGP (UMR_7154)), Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Palermo (INGV), Istituto Nazionale di Geofisica e Vulcanologia, University of Oxford, University of Iceland Reykjavik, Thermo Fisher Scientific (Bremen) GmbH
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2020
Subjects:
Online Access:https://hal.science/hal-02957852
https://hal.science/hal-02957852/document
https://hal.science/hal-02957852/file/2020%20Nature%20Labidi.pdf
https://doi.org/10.1038/s41586-020-2173-4
id ftunivparis:oai:HAL:hal-02957852v1
record_format openpolar
institution Open Polar
collection Université de Paris: Portail HAL
op_collection_id ftunivparis
language English
topic [SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry
spellingShingle [SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry
Labidi, J.
Barry, P.
Bekaert, D.
Broadley, M.
Marty, B.
Giunta, T.
Warr, O.
Sherwood Lollar, B.
Fischer, T.
Avice, G.
Caracausi, A.
Ballentine, C.
Halldórsson, S.
Stefánsson, A.
Kurz, M.
Kohl, I.
Young, E.
Hydrothermal 15N15N abundances constrain the origins of mantle nitrogen
topic_facet [SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry
description International audience Nitrogen is the main constituent of the Earth's atmosphere, but its provenance in the Earth's mantle remains uncertain. The relative contribution of primordial nitrogen inherited during the Earth's accretion versus that subducted from the Earth's surface is unclear 1-6. Here we show that the mantle may have retained remnants of such primordial nitrogen. We use the rare 15 N 15 N isotopologue of N 2 as a new tracer of air contamination in volcanic gas effusions. By constraining air contamination in gases from Iceland, Eifel (Germany) and Yellowstone (USA), we derive estimates of mantle δ 15 N (the fractional difference in 15 N/ 14 N from air), N 2 / 36 Ar and N 2 / 3 He. Our results show that negative δ 15 N values observed in gases, previously regarded as indicating a mantle origin for nitrogen 7-10 , in fact represent dominantly air-derived N 2 that experienced 15 N/ 14 N fractionation in hydrothermal systems. Using two-component mixing models to correct for this effect, the 15 N 15 N data allow extrapolations that characterize mantle endmember δ 15 N, N 2 / 36 Ar and N 2 / 3 He values. We show that the Eifel region has slightly increased δ 15 N and N 2 / 36 Ar values relative to estimates for the convective mantle provided by mid-ocean-ridge basalts 11 , consistent with subducted nitrogen being added to the mantle source. In contrast, we find that whereas the Yellowstone plume has δ 15 N values substantially greater than that of the convective mantle, resembling surface components 12-15 , its N 2 / 36 Ar and N 2 / 3 He ratios are indistinguishable from those of the convective mantle. This observation raises the possibility that the plume hosts a primordial component. We provide a test of the subduction hypothesis with a two-box model, describing the evolution of mantle and surface nitrogen through geological time. We show that the effect of subduction on the deep nitrogen cycle may be less important than has been suggested by previous investigations. We propose instead that high ...
author2 Department of Earth, Planetary and Space Sciences Los Angeles (EPSS)
University of California Los Angeles (UCLA)
University of California (UC)-University of California (UC)
Woods Hole Oceanographic Institution (WHOI)
Centre de Recherches Pétrographiques et Géochimiques (CRPG)
Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
University of Toronto
The University of New Mexico Albuquerque
Institut de Physique du Globe de Paris (IPGP (UMR_7154))
Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité)
Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Palermo (INGV)
Istituto Nazionale di Geofisica e Vulcanologia
University of Oxford
University of Iceland Reykjavik
Thermo Fisher Scientific (Bremen) GmbH
format Article in Journal/Newspaper
author Labidi, J.
Barry, P.
Bekaert, D.
Broadley, M.
Marty, B.
Giunta, T.
Warr, O.
Sherwood Lollar, B.
Fischer, T.
Avice, G.
Caracausi, A.
Ballentine, C.
Halldórsson, S.
Stefánsson, A.
Kurz, M.
Kohl, I.
Young, E.
author_facet Labidi, J.
Barry, P.
Bekaert, D.
Broadley, M.
Marty, B.
Giunta, T.
Warr, O.
Sherwood Lollar, B.
Fischer, T.
Avice, G.
Caracausi, A.
Ballentine, C.
Halldórsson, S.
Stefánsson, A.
Kurz, M.
Kohl, I.
Young, E.
author_sort Labidi, J.
title Hydrothermal 15N15N abundances constrain the origins of mantle nitrogen
title_short Hydrothermal 15N15N abundances constrain the origins of mantle nitrogen
title_full Hydrothermal 15N15N abundances constrain the origins of mantle nitrogen
title_fullStr Hydrothermal 15N15N abundances constrain the origins of mantle nitrogen
title_full_unstemmed Hydrothermal 15N15N abundances constrain the origins of mantle nitrogen
title_sort hydrothermal 15n15n abundances constrain the origins of mantle nitrogen
publisher HAL CCSD
publishDate 2020
url https://hal.science/hal-02957852
https://hal.science/hal-02957852/document
https://hal.science/hal-02957852/file/2020%20Nature%20Labidi.pdf
https://doi.org/10.1038/s41586-020-2173-4
genre Iceland
genre_facet Iceland
op_source ISSN: 0028-0836
EISSN: 1476-4687
Nature
https://hal.science/hal-02957852
Nature, 2020, 580 (7803), pp.367-371. ⟨10.1038/s41586-020-2173-4⟩
op_relation info:eu-repo/semantics/altIdentifier/doi/10.1038/s41586-020-2173-4
hal-02957852
https://hal.science/hal-02957852
https://hal.science/hal-02957852/document
https://hal.science/hal-02957852/file/2020%20Nature%20Labidi.pdf
doi:10.1038/s41586-020-2173-4
op_rights info:eu-repo/semantics/OpenAccess
op_doi https://doi.org/10.1038/s41586-020-2173-4
container_title Nature
container_volume 580
container_issue 7803
container_start_page 367
op_container_end_page 371
_version_ 1800755190747365376
spelling ftunivparis:oai:HAL:hal-02957852v1 2024-06-02T08:09:28+00:00 Hydrothermal 15N15N abundances constrain the origins of mantle nitrogen Labidi, J. Barry, P. Bekaert, D. Broadley, M. Marty, B. Giunta, T. Warr, O. Sherwood Lollar, B. Fischer, T. Avice, G. Caracausi, A. Ballentine, C. Halldórsson, S. Stefánsson, A. Kurz, M. Kohl, I. Young, E. Department of Earth, Planetary and Space Sciences Los Angeles (EPSS) University of California Los Angeles (UCLA) University of California (UC)-University of California (UC) Woods Hole Oceanographic Institution (WHOI) Centre de Recherches Pétrographiques et Géochimiques (CRPG) Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS) University of Toronto The University of New Mexico Albuquerque Institut de Physique du Globe de Paris (IPGP (UMR_7154)) Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité) Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Palermo (INGV) Istituto Nazionale di Geofisica e Vulcanologia University of Oxford University of Iceland Reykjavik Thermo Fisher Scientific (Bremen) GmbH 2020-04 https://hal.science/hal-02957852 https://hal.science/hal-02957852/document https://hal.science/hal-02957852/file/2020%20Nature%20Labidi.pdf https://doi.org/10.1038/s41586-020-2173-4 en eng HAL CCSD Nature Publishing Group info:eu-repo/semantics/altIdentifier/doi/10.1038/s41586-020-2173-4 hal-02957852 https://hal.science/hal-02957852 https://hal.science/hal-02957852/document https://hal.science/hal-02957852/file/2020%20Nature%20Labidi.pdf doi:10.1038/s41586-020-2173-4 info:eu-repo/semantics/OpenAccess ISSN: 0028-0836 EISSN: 1476-4687 Nature https://hal.science/hal-02957852 Nature, 2020, 580 (7803), pp.367-371. ⟨10.1038/s41586-020-2173-4⟩ [SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/Geochemistry info:eu-repo/semantics/article Journal articles 2020 ftunivparis https://doi.org/10.1038/s41586-020-2173-4 2024-05-07T02:54:47Z International audience Nitrogen is the main constituent of the Earth's atmosphere, but its provenance in the Earth's mantle remains uncertain. The relative contribution of primordial nitrogen inherited during the Earth's accretion versus that subducted from the Earth's surface is unclear 1-6. Here we show that the mantle may have retained remnants of such primordial nitrogen. We use the rare 15 N 15 N isotopologue of N 2 as a new tracer of air contamination in volcanic gas effusions. By constraining air contamination in gases from Iceland, Eifel (Germany) and Yellowstone (USA), we derive estimates of mantle δ 15 N (the fractional difference in 15 N/ 14 N from air), N 2 / 36 Ar and N 2 / 3 He. Our results show that negative δ 15 N values observed in gases, previously regarded as indicating a mantle origin for nitrogen 7-10 , in fact represent dominantly air-derived N 2 that experienced 15 N/ 14 N fractionation in hydrothermal systems. Using two-component mixing models to correct for this effect, the 15 N 15 N data allow extrapolations that characterize mantle endmember δ 15 N, N 2 / 36 Ar and N 2 / 3 He values. We show that the Eifel region has slightly increased δ 15 N and N 2 / 36 Ar values relative to estimates for the convective mantle provided by mid-ocean-ridge basalts 11 , consistent with subducted nitrogen being added to the mantle source. In contrast, we find that whereas the Yellowstone plume has δ 15 N values substantially greater than that of the convective mantle, resembling surface components 12-15 , its N 2 / 36 Ar and N 2 / 3 He ratios are indistinguishable from those of the convective mantle. This observation raises the possibility that the plume hosts a primordial component. We provide a test of the subduction hypothesis with a two-box model, describing the evolution of mantle and surface nitrogen through geological time. We show that the effect of subduction on the deep nitrogen cycle may be less important than has been suggested by previous investigations. We propose instead that high ... Article in Journal/Newspaper Iceland Université de Paris: Portail HAL Nature 580 7803 367 371