Hydrothermal 15N15N abundances constrain the origins of mantle nitrogen

International audience Nitrogen is the main constituent of the Earth's atmosphere, but its provenance in the Earth's mantle remains uncertain. The relative contribution of primordial nitrogen inherited during the Earth's accretion versus that subducted from the Earth's surface is...

Full description

Bibliographic Details
Published in:Nature
Main Authors: Labidi, J., Barry, P., Bekaert, D., Broadley, M., Marty, B., Giunta, T., Warr, O., Sherwood Lollar, B., Fischer, T., Avice, G., Caracausi, A., Ballentine, C., Halldórsson, S., Stefánsson, A., Kurz, M., Kohl, I., Young, E.
Other Authors: Department of Earth, Planetary and Space Sciences Los Angeles (EPSS), University of California Los Angeles (UCLA), University of California (UC)-University of California (UC), Woods Hole Oceanographic Institution (WHOI), Centre de Recherches Pétrographiques et Géochimiques (CRPG), Institut national des sciences de l'Univers (INSU - CNRS)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS), University of Toronto, The University of New Mexico Albuquerque, Institut de Physique du Globe de Paris (IPGP (UMR_7154)), Institut national des sciences de l'Univers (INSU - CNRS)-Université de La Réunion (UR)-Institut de Physique du Globe de Paris (IPG Paris)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Cité (UPCité), Istituto Nazionale di Geofisica e Vulcanologia - Sezione di Palermo (INGV), Istituto Nazionale di Geofisica e Vulcanologia, University of Oxford, University of Iceland Reykjavik, Thermo Fisher Scientific (Bremen) GmbH
Format: Article in Journal/Newspaper
Language:English
Published: HAL CCSD 2020
Subjects:
Online Access:https://hal.science/hal-02957852
https://hal.science/hal-02957852/document
https://hal.science/hal-02957852/file/2020%20Nature%20Labidi.pdf
https://doi.org/10.1038/s41586-020-2173-4
Description
Summary:International audience Nitrogen is the main constituent of the Earth's atmosphere, but its provenance in the Earth's mantle remains uncertain. The relative contribution of primordial nitrogen inherited during the Earth's accretion versus that subducted from the Earth's surface is unclear 1-6. Here we show that the mantle may have retained remnants of such primordial nitrogen. We use the rare 15 N 15 N isotopologue of N 2 as a new tracer of air contamination in volcanic gas effusions. By constraining air contamination in gases from Iceland, Eifel (Germany) and Yellowstone (USA), we derive estimates of mantle δ 15 N (the fractional difference in 15 N/ 14 N from air), N 2 / 36 Ar and N 2 / 3 He. Our results show that negative δ 15 N values observed in gases, previously regarded as indicating a mantle origin for nitrogen 7-10 , in fact represent dominantly air-derived N 2 that experienced 15 N/ 14 N fractionation in hydrothermal systems. Using two-component mixing models to correct for this effect, the 15 N 15 N data allow extrapolations that characterize mantle endmember δ 15 N, N 2 / 36 Ar and N 2 / 3 He values. We show that the Eifel region has slightly increased δ 15 N and N 2 / 36 Ar values relative to estimates for the convective mantle provided by mid-ocean-ridge basalts 11 , consistent with subducted nitrogen being added to the mantle source. In contrast, we find that whereas the Yellowstone plume has δ 15 N values substantially greater than that of the convective mantle, resembling surface components 12-15 , its N 2 / 36 Ar and N 2 / 3 He ratios are indistinguishable from those of the convective mantle. This observation raises the possibility that the plume hosts a primordial component. We provide a test of the subduction hypothesis with a two-box model, describing the evolution of mantle and surface nitrogen through geological time. We show that the effect of subduction on the deep nitrogen cycle may be less important than has been suggested by previous investigations. We propose instead that high ...