Xanthophyll cycles in the juniper haircap moss (Polytrichum juniperinum) and Antarctic hair grass (Deschampsia antarctica) on Livingston Island (South Shetland Islands, Maritime Antarctica)

The summer climate in Maritime Antarctica is characterised by high humidity and cloudiness with slightly above zero temperatures. Under such conditions, photosynthetic activity is temperature-limited and plant communities are formed by a few species. These conditions could prevent the operation of t...

Full description

Bibliographic Details
Published in:Polar Biology
Main Authors: García Plazaola, José Ignacio, López Pozo, Marina, Fernández Marín, Beatriz
Format: Article in Journal/Newspaper
Language:English
Published: Springer 2022
Subjects:
Online Access:http://hdl.handle.net/10810/57938
https://doi.org/10.1007/s00300-022-03068-7
Description
Summary:The summer climate in Maritime Antarctica is characterised by high humidity and cloudiness with slightly above zero temperatures. Under such conditions, photosynthetic activity is temperature-limited and plant communities are formed by a few species. These conditions could prevent the operation of the photoprotective xanthophyll (VAZ) cycle as low irradiance reduces the excess of energy and low temperatures limit enzyme activity. The VAZ cycle regulates the dissipation of the excess of absorbed light as heat, which is the main mechanism of photoprotection in plants. To test whether this mechanism operates dynamically in Antarctic plant communities, we characterised pigment dynamics under natural field conditions in two representative species: the moss Polytrichum juniperinum and the grass Deschampsia antarctica. Pigment analyses revealed that the total VAZ pool was in the upper range of the values reported for most plant species, suggesting that they are exposed to a high degree of environmental stress. Despite cloudiness, there was a strong conversion of violaxanthin (V) to zeaxanthin (Z) during daytime. Conversely, the dark-induced enzymatic epoxidation back to V was not limited by nocturnal temperatures. In contrast with plants from other cold ecosystems, we did not find any evidence of overnight retention of Z or sustained reductions in photochemical efficiency. These results are of interest for modelling, remote sensing and upscaling of the responses of Antarctic vegetation to environmental challenges. The Spanish Ministry of Science, Innovation and Universities (MICIU/FEDER, EU) and the Basque Government funded this research through the projects CTM2014-53902-C2-2-P, PGC2018-093824-B-C44 and UPV/EHU IT-1018-16. Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.