A novel microstructure-based model to explain the IceCube ice anisotropy

The IceCube Neutrino Observatory instruments about 1 km3 of deep, glacial ice at the geographic South Pole using 5160 photomultipliers to detect Cherenkov light of charged relativistic particles. Most of IceCube’s science goals rely heavily on an ever more precise understanding of the optical proper...

Full description

Bibliographic Details
Main Authors: Rongen M., Chirkin D., Abbasi R., Ackermann M., Adams J., Aguilar J. A., Ahlers M., Ahrens M., Alispach C., Alves A. A., Amin N. M., An R., Andeen K., Anderson T., Anton G., Arguelles C., Ashida Y., Axani S., Bai X., Balagopal A. V., Barbano A., Barwick S. W., Bastian B., Basu V., Baur S., Bay R., Beatty J. J., Becker K. -H., Becker Tjus J., Bellenghi C., BenZvi S., Berley D., Bernardini E., Besson D. Z., Binder G., Bindig D., Blaufuss E., Blot S., Boddenberg M., Bontempo F., Borowka J., Boser S., Botner O., Bottcher J., Bourbeau E., Bradascio F., Braun J., Bron S., Brostean-Kaiser J., Browne S., Burgman A., Burley R. T., Busse R. S., Campana M. A., Carnie-Bronca E. G., Chen C., Choi K., Clark B. A., Clark K., Classen L., Coleman A., Collin G. H., Conrad J. M., Coppin P., Correa P., Cowen D. F., Cross R., Dappen C., Dave P., De Clercq C., DeLaunay J. J., Dembinski H., Deoskar K., De Ridder S., Desai A., Desiati P., de Vries K. D., de Wasseige G., de With M., DeYoung T., Dharani S., Diaz A., Diaz-Velez J. C., Dittmer M., Dujmovic H., Dunkman M., DuVernois M. A., Dvorak E., Ehrhardt T., Eller P., Engel R., Erpenbeck H., Evans J., Evenson P. A., Fan K. L., Fazely A. R., Fiedlschuster S., Fienberg A. T., Filimonov K., Finley C., Fischer L., Fox D., Franckowiak A., Friedman E., Fritz A., Furst P., Gaisser T. K., Gallagher J., Ganster E., Garcia A., Garrappa S., Gerhardt L., Ghadimi A., Glaser C., Glauch T., Glusenkamp T., Goldschmidt A., Gonzalez J. G., Goswami S., Grant D., Gregoire T., Griswold S., Gunduz M., Gunther C., Haack C., Hallgren A., Halliday R., Halve L., Halzen F., Ha Minh M., Hanson K., Hardin J., Harnisch A. A., Haungs A., Hauser S., Hebecker D., Helbing K., Henningsen F., Hettinger E. C., Hickford S., Hignight J., Hill C., Hill G. C., Hoffman K. D., Hoffmann R., Hoinka T., Hokanson-Fasig B., Hoshina K., Huang F., Huber M., Huber T., Hultqvist K., Hunnefeld M., Hussain R., In S., Iovine N., Ishihara A., Jansson M., Japaridze G. S., Jeong M., Jones B. J. P., Kang D., Kang W., Kang X., Kappes A., Kappesser D., Karg T., Karl M., Karle A., Katz U., Kauer M., Kellermann M., Kelley J. L., Kheirandish A., Kin K., Kintscher T., Kiryluk J., Klein S. R., Koirala R., Kolanoski H., Kontrimas T., Kopke L., Kopper C., Kopper S., Koskinen D. J., Koundal P., Kovacevich M., Kowalski M., Kozynets T., Kun E., Kurahashi N., Lad N., Lagunas Gualda C., Lanfranchi J. L., Larson M. J., Lauber F., Lazar J. P., Lee J. W., Leonard K., Leszczynska A., Li Y., Lincetto M., Liu Q. R., Liubarska M., Lohfink E., Lozano Mariscal C. J., Lu L., Lucarelli F., Ludwig A., Luszczak W., Lyu Y., Ma W. Y., Madsen J., Mahn K. B. M., Makino Y., Mancina S., Maris I. C., Maruyama R., Mase K., McElroy T., McNally F., Mead J. V., Meagher K., Medina A., Meier M., Meighen-Berger S., Micallef J., Mockler D., Montaruli T., Moore R. W., Morse R., Moulai M., Naab R., Nagai R., Naumann U., Necker J., Nguyen L. V., Niederhausen H., Nisa M. U., Nowicki S. C., Nygren D. R., Obertacke Pollmann A., Oehler M., Olivas A., O'Sullivan E., Pandya H., Pankova D. V., Park N., Parker G. K., Paudel E. N., Paul L., Perez de los Heros C., Peters L., Peterson J., Philippen S., Pieloth D., Pieper S., Pittermann M., Pizzuto A., Plum M., Popovych Y., Porcelli A., Prado Rodriguez M., Price P. B., Pries B., Przybylski G. T., Raab C., Raissi A., Rameez M., Rawlins K., Rea I. C., Rehman A., Reichherzer P., Reimann R., Renzi G., Resconi E., Reusch S., Rhode W., Richman M., Riedel B., Roberts E. J., Robertson S., Roellinghoff G., Rott C., Ruhe T., Ryckbosch D., Rysewyk Cantu D., Safa I., Saffer J., Sanchez Herrera S. E., Sandrock A., Sandroos J., Santander M., Sarkar S., Satalecka K., Scharf M., Schaufel M., Schieler H., Schindler S., Schlunder P., Schmidt T., Schneider A., Schneider J., Schroder F. G., Schumacher L., Schwefer G., Sclafani S., Seckel D., Seunarine S., Sharma A., Shefali S., Silva M., Skrzypek B., Smithers B., Snihur R., Soedingrekso J., Soldin D., Spannfellner C., Spiczak G. M., Spiering C., Stachurska J., Stamatikos M., Stanev T., Stein R., Stettner J., Steuer A., Stezelberger T., Sturwald T., Stuttard T., Sullivan G. W., Taboada I., Tenholt F., Ter-Antonyan S., Tilav S., Tischbein F., Tollefson K., Tomankova L., Tonnis C., Toscano S., Tosi D., Trettin A., Tselengidou M., Tung C. F., Turcati A., Turcotte R., Turley C. F., Twagirayezu J. P., Ty B., Unland Elorrieta M. A., Valtonen-Mattila N., Vandenbroucke J., van Eijndhoven N., Vannerom D., van Santen J., Verpoest S., Vraeghe M., Walck C., Watson T. B., Weaver C., Weigel P., Weindl A., Weiss M. J., Weldert J., Wendt C., Werthebach J., Weyrauch M., Whitehorn N., Wiebusch C. H., Williams D. R., Wolf M., Woschnagg K., Wrede G., Wulff J., Xu X. W., Xu Y., Yanez J. P., Yoshida S., Yu S., Yuan T., Zhang Z.
Other Authors: Rongen, M., Chirkin, D., Abbasi, R., Ackermann, M., Adams, J., Aguilar, J. A., Ahlers, M., Ahrens, M., Alispach, C., Alves, A. A., Amin, N. M., An, R., Andeen, K., Anderson, T., Anton, G., Arguelles, C., Ashida, Y., Axani, S., Bai, X., Balagopal, A. V., Barbano, A., Barwick, S. W., Bastian, B., Basu, V., Baur, S., Bay, R., Beatty, J. J., Becker, K. -H., Becker Tjus, J., Bellenghi, C., Benzvi, S., Berley, D., Bernardini, E., Besson, D. Z., Binder, G., Bindig, D., Blaufuss, E., Blot, S., Boddenberg, M., Bontempo, F., Borowka, J., Boser, S., Botner, O., Bottcher, J., Bourbeau, E., Bradascio, F., Braun, J., Bron, S., Brostean-Kaiser, J., Browne, S.
Format: Conference Object
Language:English
Published: Sissa Medialab Srl 2022
Subjects:
Online Access:https://hdl.handle.net/11577/3503926
Description
Summary:The IceCube Neutrino Observatory instruments about 1 km3 of deep, glacial ice at the geographic South Pole using 5160 photomultipliers to detect Cherenkov light of charged relativistic particles. Most of IceCube’s science goals rely heavily on an ever more precise understanding of the optical properties of the instrumented ice. A curious light propagation effect observed by the experiment is an anisotropic attenuation, which is aligned with the local flow of the ice. Having recently identified curved photon trajectories resulting from asymmetric light diffusion in the birefringent polycrystalline microstructure of the ice as the most likely underlying cause of this effect, work is now ongoing to optimize the model parameters (effectively deducing the average crystal size and shape in the detector). We present the parametrization of the birefringence effect in our photon propagation simulation, the fitting procedures and results as well as the impact of the new ice model on data-MC agreement.