Muscle, tendons, and bone: structural changes during denervation and FES treatment

Neurol Res. 2011 Sep;33(7):750-8. Muscle, tendons, and bone: structural changes during denervation and FES treatment. Gargiulo P, Reynisson PJ, Helgason B, Kern H, Mayr W, Ingvarsson P, Helgason T, Carraro U. Source Department of Development and Consultancy UTS, Landspitali-University Hospital, Reyk...

Full description

Bibliographic Details
Published in:Neurological Research
Main Authors: Gargiulo P, Reynisson PJ, Helgason B, Kern H, Mayr W, Ingvarsson P, Helgason T, CARRARO, UGO
Other Authors: Gargiulo, P, Reynisson, Pj, Helgason, B, Kern, H, Mayr, W, Ingvarsson, P, Helgason, T, Carraro, Ugo
Format: Article in Journal/Newspaper
Language:English
Published: Forefront Publishing Group:5 River Road, Suite 113, Private Mail Box 113:Wilton, CT 06897:(203)834-0631, EMAIL: info@forefrontpublishing.com, Fax: (203)834-0940 Previous: New York: Crane, Russak & Co. 2011
Subjects:
Online Access:http://hdl.handle.net/11577/2480419
https://doi.org/10.1179/1743132811Y.0000000007
Description
Summary:Neurol Res. 2011 Sep;33(7):750-8. Muscle, tendons, and bone: structural changes during denervation and FES treatment. Gargiulo P, Reynisson PJ, Helgason B, Kern H, Mayr W, Ingvarsson P, Helgason T, Carraro U. Source Department of Development and Consultancy UTS, Landspitali-University Hospital, Reykjavik, Iceland. paologar@landspitali.is Abstract OBJECTIVES: This paper describes a novel approach to determine structural changes in bone, muscle, and tendons using medical imaging, finite element models, and processing techniques to evaluate and quantify: (1) progression of atrophy in permanently lower motor neuron (LMN) denervated human muscles, and tendons; (2) their recovery as induced by functional electrical stimulation (FES); and (3) changes in bone mineral density and bone strength as effect of FES treatment. METHODS: Briefly, we used three-dimensional reconstruction of muscle belly, tendons, and bone images to study the structural changes occurring in these tissues in paralysed subjects after complete lumbar-ischiadic spinal cord injury (SCI). These subjects were recruited through the European project RISE, an endeavour designed to establish a novel clinical rehabilitation method for patients who have permanent and non-recoverable muscle LMN denervation in the lower extremities. This paper describes the use of segmentation techniques to study muscles, tendons, and bone in several states: healthy, LMN denervated-degenerated but not stimulated, and LMN denervated-stimulated. Here, we have used medical images to develop three-dimensional models and advanced imaging, including computational tools to display tissue density. Different tissues are visualized associating proper Hounsfield intervals defined experimentally to fat, connective tissue, and muscle. Finite element techniques are used to calculate Young's modulus on the patella bone and to analyse correlation between muscle contraction and bone strength changes. RESULTS: These analyses show restoration of muscular structures, tendons, and bone after FES as ...