Heterogeneous (ITS-G5 and 5G) vehicular pilot road weather service platform in a realistic operational environment

Abstract VANETs (Vehicular Ad hoc Networks) operating in conjunction with road-side infrastructure connecting road-side infrastructure are an emerging field of wireless communication technology in the vehicular communication’s domain. For VANETs, the IEEE 802.11p-based ITS-G5 is one of the key stand...

Full description

Bibliographic Details
Main Authors: Tahir, M. N. (Muhammad Naeem), Katz, M. (Marcos)
Format: Article in Journal/Newspaper
Language:English
Published: Multidisciplinary Digital Publishing Institute 2021
Subjects:
ITS
RWS
V2I
V2V
VN
Online Access:http://urn.fi/urn:nbn:fi-fe2021042111132
Description
Summary:Abstract VANETs (Vehicular Ad hoc Networks) operating in conjunction with road-side infrastructure connecting road-side infrastructure are an emerging field of wireless communication technology in the vehicular communication’s domain. For VANETs, the IEEE 802.11p-based ITS-G5 is one of the key standards for communication globally. This research work integrates the ITS-G5 with a cellular-based 5G Test Network (5GTN). The resulting advanced heterogeneous Vehicular Network (VN) test-bed works as an effective platform for traffic safety between vehicles and road-side-infrastructure. This test-bed network provides a flexible framework to exploit vehicle-based weather data and road observation information, creating a service architecture for VANETs that supports real-time intelligent traffic services. The network studied in this paper aims to deliver improved road safety by providing real-time weather forecast, road friction information and road traffic related services. This article presents the implementation of a realistic test-bed in Northern Finland and the field measurement results of the heterogeneous VANETs considering the speed of vehicle, latency, good-put time and throughput. The field measurement results have been obtained in a state-of-the-art hybrid VANET system supporting special road weather services. Based on field measurement results, we suggest an efficient solution for a comprehensive hybrid vehicular networking infrastructure exploiting road weather information.