Home automation for a sustainable living:modelling a detached house in Northern Finland

Abstract This paper presents a model of a detached house in which home automation has been progressively introduced into the building. The model integrates different factors related to end-user behaviour and decision-making regarding the management of electrical energy consumption, and integrates a...

Full description

Bibliographic Details
Main Authors: Louis, J.-N. (Jean-Nicolas), Caló, A. (Antonio), Leiviskä, K. (Kauko), Pongrácz, E. (Eva)
Format: Article in Journal/Newspaper
Language:English
Published: Publications Office of the European Union 2014
Subjects:
Online Access:http://urn.fi/urn:nbn:fi-fe201703082024
Description
Summary:Abstract This paper presents a model of a detached house in which home automation has been progressively introduced into the building. The model integrates different factors related to end-user behaviour and decision-making regarding the management of electrical energy consumption, and integrates a gradual end-user response to home automation measures. The presented model aims to show the potential economic benefits obtained by the modelled changes of end-users’ behaviours within a smart energy network based energy system. Matlab/Simulink is used as a simulation tool for representing the model in which a 10 year database of Nordic climatic data has been built in, on an hourly and half hourly basis. The modelled building environment comprises twenty-one appliances and two lighting systems with different power rates. Each appliance and light bulb is individually measured. The feedback methods assessed were self-comparison, inter-comparison, and a target based system. The effect of home automation on energy consumption at the building level is assessed, and the importance of end-users in energy reduction is highlighted. The model categorises “green” and “brown” energy users and integrates their behavioural profiles within the end-user response. As part of a smarter electricity management system, the home automation system is able to interact with other buildings, either in terms of geographic or building infrastructure similarities. This will enable taking or modifying decisions at any given time, thus contributing to the local flattening of power demand. Such systems must work hand-in-hand with the grid operator.