Moletrack scarps to mountains: Quaternary tectonics of the central Alaska Range

xvi, 121 p. : ill. (some col.), maps (some col.) Also includes two large-scale maps in two separate pdf files. A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. Deformation across plate boundaries often occurs over broad z...

Full description

Bibliographic Details
Main Author: Bemis, Sean Patrick, 1979-
Format: Thesis
Language:English
Published: University of Oregon 2010
Subjects:
Online Access:http://hdl.handle.net/1794/10563
Description
Summary:xvi, 121 p. : ill. (some col.), maps (some col.) Also includes two large-scale maps in two separate pdf files. A print copy of this thesis is available through the UO Libraries. Search the library catalog for the location and call number. Deformation across plate boundaries often occurs over broad zones with relative motions between plates typically accommodated by faults of different styles acting together in a complex system. Collision of the Yakutat microplate within the Alaskan portion of the Pacific-North America plate boundary drives deformation over 600 km away where the Denali fault divides predominantly rigid crustal block motions of southern Alaska from distributed deformation in central Alaska. Quaternary geologic mapping along the Nenana River valley and the Japan Hills of the northern foothills of the Alaska Range defines zones of Quaternary thrust faulting recorded in the progressive deformation of Pleistocene fluvial terraces. I use topographic profiles of these terraces and paleoseismic trenching of fault scarps to characterize the Quaternary activity and constrain the subsurface geometry of these faults. Radiocarbon and cosmogenic exposure dating methods provide age control on the stratigraphy in the trenches and landforms offset by these faults. These observations define a 1-1.5 mm/yr slip rate for the Gold King fault which changes laterally from a north-vergent thrust into a north and south vergent thrust wedge that uplifts the Japan Hills. Along the Nenana River valley, the progressive deformation of Pleistocene surfaces defines a north-vergent critically-tapered thrust wedge. The geometry of progressive uplift and folding requires a near planar, south-dipping basal thrust fault with two major north-dipping backthrusts. All three faults were active simultaneously on a scale of 10 4 yrs with slip rates of 0.25-1 mm/yr, until the late Pleistocene when we infer the retreat of glacial ice from the main axis of the Alaska Range caused a change in thrust wedge dynamics. I use the orientation of ...