Single-Column Modeling, GCM Parameterizations and Atmospheric Radiation Measurement Data

Our overall goal is identical to that of the Atmospheric Radiation Measurement (ARM) Program: the development of new and improved parameterizations of cloud-radiation effects and related processes, using ARM data at all three ARM sites, and the implementation and testing of these parameterizations i...

Full description

Bibliographic Details
Main Authors: Somerville, R.C.J., Iacobellis, S.F.
Format: Article in Journal/Newspaper
Language:English
Published: Scripps Institution of Oceanography/USCD, La Jolla, California (United States) 2005
Subjects:
Online Access:https://digital.library.unt.edu/ark:/67531/metadc787429/
Description
Summary:Our overall goal is identical to that of the Atmospheric Radiation Measurement (ARM) Program: the development of new and improved parameterizations of cloud-radiation effects and related processes, using ARM data at all three ARM sites, and the implementation and testing of these parameterizations in global and regional models. To test recently developed prognostic parameterizations based on detailed cloud microphysics, we have first compared single-column model (SCM) output with ARM observations at the Southern Great Plains (SGP), North Slope of Alaska (NSA) and Topical Western Pacific (TWP) sites. We focus on the predicted cloud amounts and on a suite of radiative quantities strongly dependent on clouds, such as downwelling surface shortwave radiation. Our results demonstrate the superiority of parameterizations based on comprehensive treatments of cloud microphysics and cloud-radiative interactions. At the SGP and NSA sites, the SCM results simulate the ARM measurements well and are demonstrably more realistic than typical parameterizations found in conventional operational forecasting models. At the TWP site, the model performance depends strongly on details of the scheme, and the results of our diagnostic tests suggest ways to develop improved parameterizations better suited to simulating cloud-radiation interactions in the tropics generally. These advances have made it possible to take the next step and build on this progress, by incorporating our parameterization schemes in state-of-the-art 3D atmospheric models, and diagnosing and evaluating the results using independent data. Because the improved cloud-radiation results have been obtained largely via implementing detailed and physically comprehensive cloud microphysics, we anticipate that improved predictions of hydrologic cycle components, and hence of precipitation, may also be achievable. We are currently testing the performance of our ARM-based parameterizations in state-of-the--art global and regional models. One fruitful strategy for evaluating advances in parameterizations has turned out to be using short-range numerical weather prediction as a test-bed within which to implement and improve parameterizations for modeling and predicting climate variability. The global models we have used to date are the CAM atmospheric component of the National Center for Atmospheric Research (NCAR) CCSM climate model as well as the National Centers for Environmental Prediction (NCEP) numerical weather prediction model, thus allowing testing in both climate simulation and numerical weather prediction modes. We present detailed results of these tests, demonstrating the sensitivity of model performance to changes in parameterizations.