The microbial fate of carbon in high-latitude seas: Impact of the microbial loop on oceanic uptake of CO{sub 2}

This dissertation examines pelagic microbial processes in high-latitude seas, how they affect regional and global carbon cycling, and how they might respond to hypothesized changes in climate. Critical to these interests is the effect of cold temperature on bacterial activity. Also important is the...

Full description

Bibliographic Details
Main Author: Yager, Patricia L.
Other Authors: United States. Department of Energy. Office of Energy Research.
Format: Report
Language:English
Published: Washington Univ., School of Oceanography, Seattle, WA (United States) 1996
Subjects:
Online Access:https://doi.org/10.2172/671868
https://digital.library.unt.edu/ark:/67531/metadc708111/
Description
Summary:This dissertation examines pelagic microbial processes in high-latitude seas, how they affect regional and global carbon cycling, and how they might respond to hypothesized changes in climate. Critical to these interests is the effect of cold temperature on bacterial activity. Also important is the extent to which marine biological processes in general impact the inorganic carbon cycle. The study area is the Northeast Water (NEW) Polynya, a seasonally-recurrent opening in the permanent ice situated over the northeastern Greenland continental shelf. This work was part of an international, multi-disciplinary research project studying carbon cycling in the coastal Arctic. The first chapter describes a simple model which links a complex marine food web to a simplified ocean and atmosphere. The second chapter investigates the inorganic carbon inventory of the summertime NEW Polynya surface waters to establish the effect of biological processes on the air-sea pCO{sub 2} gradient. The third and fourth chapters use a kinetic approach to examine microbial activities in the NEW Polynya as a function of temperature and dissolved organic substrate concentration, testing the so-called Pomeroy hypothesis that microbial activity is disproportionately reduced at low environmental temperatures owing to increased organic substrate requirements. Together, the suite of data collected on microbial activities, cell size, and grazing pressure suggest how unique survival strategies adopted by an active population of high-latitude bacteria may contribute to, rather than detract from, an efficient biological carbon pump.