Modeling of the Arctic boundary layer: Comparisons with measurements from the Arctic Ocean Expedition 1996

During the recent 3 month Arctic Ocean Expedition (AOE-96) to the North Pole during the summer of 1996 an enormous amount of data collected on the Arctic planetary boundary layer. In preparation for the expedition, the authors have developed an expanded and quite flexible 1-D computer code based on...

Full description

Bibliographic Details
Main Authors: ReVelle, D. O., Nilsson, E. D., Kulmala, M.
Other Authors: United States. Department of Energy.
Format: Article in Journal/Newspaper
Language:English
Published: Los Alamos National Laboratory 1997
Subjects:
Online Access:https://digital.library.unt.edu/ark:/67531/metadc697517/
Description
Summary:During the recent 3 month Arctic Ocean Expedition (AOE-96) to the North Pole during the summer of 1996 an enormous amount of data collected on the Arctic planetary boundary layer. In preparation for the expedition, the authors have developed an expanded and quite flexible 1-D computer code based on the successful work of ReVelle and of ReVelle and Coulter on modeling of boundary layer ``bursting``. This new code, BLMARC (Boundary Layer, Mixing, Aerosols, Radiation and Clouds), explicitly includes the physical and chemical effects due to the presence of clouds, aerosols and associated air chemistry. Using data from AOE-96 and the model BLMARC, the authors have begun a systematic effort to compare observations of the high Arctic boundary layer against numerical modeling results. The preliminary results for case963 and case964 are quite promising. The second period exhibits what appears to be bursting effects in the temperature, the winds and in the aerosol concentration and the modeling efforts have shown a similar set of features as well. Current work also includes model experiments with BLMARC on the aerosol nucleation and growth in the Arctic PBL and cloud and fog formation.