Fine-scale oscillatory banding in otoliths from arctic charr (Salveninus alpinus) and pike (Esox lucius)

Transmission electron microscopy of otoliths from the inner ear of arctic charr and pike has revealed the presence of fine banding on the scale of several nanometers. The thickness of the bands was observed to vary in different portions of the sample, and some areas were not banded. EDS analysis cou...

Full description

Bibliographic Details
Main Authors: Meldrum, A., Halden, N. M.
Other Authors: United States. Department of Energy. Office of Energy Research.
Format: Article in Journal/Newspaper
Language:English
Published: Oak Ridge National Laboratory 1997
Subjects:
Online Access:https://digital.library.unt.edu/ark:/67531/metadc690136/
Description
Summary:Transmission electron microscopy of otoliths from the inner ear of arctic charr and pike has revealed the presence of fine banding on the scale of several nanometers. The thickness of the bands was observed to vary in different portions of the sample, and some areas were not banded. EDS analysis could not detect chemical differences within the bands, but electron diffraction showed that the crystallographic orientation of the bands is related by a lattice mismatch. Previously, banding on the scale of 50 to 100 microns was observed by SEM in otoliths from arctic charr and was attributed to seasonal variations in growth. The fine-scale banding observed in this study, however, is unlikely to represent a daily variation. Electron diffraction from the pike samples shows that the material is composed of CaCO{sub 3} having the both the vaterite and aragonite structure, and hydrous CaCO{sub 3} was also observed. The large-scale banding previously identified by SEM was not observed in the TEM despite attempts to intersect the boundaries of the micron-sized layers. The interaction of the electron beam with the sample material was investigated by conducting several electron-irradiation experiments. The electron beam was observed to interact strongly with the sample and caused the precipitation of cubic CaO from the calcium carbonate matrix. Bright-field imaging showed the development of fine grained ({approximately} 5 nm) randomly oriented crystallites which accumulated with increasing electron dose. These initial results suggest that the precipitation of CaO is not driven by electron-beam beating. Previously, a similar phase-change phenomenon has been observed in hydroxyapatite from dental enamel. Other Ca-bearing biominerals may therefore also be expected to be sensitive to electron irradiation.