The sensitivity of seismic responses to gas hydrates

The sensitivity of seismic reflection coefficients and amplitudes, and their variations with changing incidence angles and offsets, was determined with respect to changes in the parameters which characterize marine sediments containing gas hydrates. Using the results of studies of ice saturation eff...

Full description

Bibliographic Details
Main Authors: Foley, John E., Burns, Daniel R.
Other Authors: United States. Department of Energy.
Format: Report
Language:English
Published: New England Research, Inc., White River Junction, VT (United States) 1992
Subjects:
Ice
Online Access:https://doi.org/10.2172/6982379
https://digital.library.unt.edu/ark:/67531/metadc1188103/
Description
Summary:The sensitivity of seismic reflection coefficients and amplitudes, and their variations with changing incidence angles and offsets, was determined with respect to changes in the parameters which characterize marine sediments containing gas hydrates. Using the results of studies of ice saturation effects in permafrost soils, we have introduced rheological effects of hydrate saturation. The replacement of pore fluids in highly porous and unconsolidated marine sediments with crystalline gas hydrates, increases the rigidity of the sediments, and alters the ratio of compressional/shear strength ratio. This causes Vp/Vs ratio variations which have an effect on the amplitudes of P-wave and S-wave reflections. Analysis of reflection coefficient functions has revealed that amplitudes are very sensitive to porosity estimates, and errors in the assumed model porosity can effect the estimates of hydrate saturation. Additionally, we see that the level of free gas saturation is difficult to determine. A review of the effects of free gas and hydrate saturation on shear wave arrivals indicates that far-offset P to S wave converted arrivals may provide a means of characterizing hydrate saturations. Complications in reflection coefficient and amplitude modelling can arise from gradients in hydrate saturation levels and from rough sea floor topography. An increase in hydrate saturation with depth in marine sediments causes rays to bend towards horizontal and increases the reflection incidence angles and subsequent amplitudes. This effect is strongly accentuated when the vertical separation between the source and the hydrate reflection horizon is reduced. The effect on amplitude variations with offset due to a rough sea floor was determined through finite difference wavefield modelling. Strong diffractions in the waveforms add noise to the amplitude versus offset functions.