Sonic and resistivity measurements on Berea sandstone containing tetrahydrofuran hydrates: a possible analogue to natural-gas-hydrate deposits. [Tetrahydrofuran hydrates]

Deposits of natural gas hydrates exist in arctic sedimentary basins and in marine sediments on continental slopes and rises. However, the physical properties of such sediments are largely unknown. In this paper, we report laboratory sonic and resistivity measurements on Berea sandstone cores saturat...

Full description

Bibliographic Details
Main Authors: Pearson, C., Murphy, J., Halleck, P., Hermes, R., Mathews, M.
Format: Article in Journal/Newspaper
Language:English
Published: Los Alamos National Laboratory 1983
Subjects:
Online Access:https://digital.library.unt.edu/ark:/67531/metadc1111105/
Description
Summary:Deposits of natural gas hydrates exist in arctic sedimentary basins and in marine sediments on continental slopes and rises. However, the physical properties of such sediments are largely unknown. In this paper, we report laboratory sonic and resistivity measurements on Berea sandstone cores saturated with a stoichiometric mixture of tetrahydrofuran (THF) and water. We used THF as the guest species rather than methane or propane gas because THF can be mixed with water to form a solution containing proportions of the proper stoichiometric THF and water. Because neither methane nor propane is soluble in water, mixing the guest species with water sufficiently to form solid hydrate is difficult. Because THF solutions form hydrates readily at atmospheric pressure it is an excellent experimental analogue to natural gas hydrates. Hydrate formation increased the sonic P-wave velocities from a room temperature value of 2.5 km/s to 4.5 km/s at -5/sup 0/C when the pores were nearly filled with hydrates. Lowering the temperature below -5/sup 0/C did not appreciably change the velocity however. In contrast, the electrical resistivity increases nearly two orders of magnitude upon hydrate formation and continues to increase more slowly as the temperature is further decreased. In all cases the resistivities are nearly frequency independent to 30 kHz and the loss tangents are high, always greater than 5. The dielectric loss shows a linear decrease with frequency suggesting that ionic conduction through a brine phase dominates at all frequencies, even when the pores are nearly filled with hydrates. We find that the resistivities are strongly a function of the dissolved salt content of the pore water. Pore water salinity also influences the sonic velocity, but this effect is much smaller and only important near the hydrate formation temperature.