Ecotoxicity of materials from integrated two-stage liquefaction and Exxon Donor Solvent processes

Coal-derived materials from two coal conversion processes were screened for potential ecological toxicity. We examined the toxicity of materials from different engineering or process options to an aquatic invertebrate and also related potential hazard to relative concentration, composition, and stab...

Full description

Bibliographic Details
Main Authors: Dauble, D.D., Scott, A.J., Lusty, E.W., Thomas, B.L., Hanf, R.W. Jr.
Format: Report
Language:English
Published: Pacific Northwest Laboratory 1983
Subjects:
Online Access:https://doi.org/10.2172/6037394
https://digital.library.unt.edu/ark:/67531/metadc1098238/
Description
Summary:Coal-derived materials from two coal conversion processes were screened for potential ecological toxicity. We examined the toxicity of materials from different engineering or process options to an aquatic invertebrate and also related potential hazard to relative concentration, composition, and stability of water soluble components. For materials tested from the Integrated Two-Stage Liquefaction (ITSL) process, only the LC finer (LCF) 650/sup 0/F distillate was highly soluble in water at 20/sup 0/C. The LCF feed and Total Liquid Product (TLP) were not in liquid state at 20/sup 0/C and were relatively insoluble in water. Relative hazard to daphnids from ITSL materials was as follows: LCF 650/sup 0/F distillate greater than or equal to LCF feed greater than or equal to TLP. For Exxon Donor Solvent (EDS) materials, process solvent produced in the bottoms recycle mode was more soluble in water than once-through process solvent and, hence, slightly more acutely toxic to daphnids. When compared to other coal liquids or petroleum products, the ITSL or EDS liquids were intermediate in toxicity; relative hazard ranged from 1/7 to 1/13 of the Solvent Refined Coal (SRC)-II distillable blend, but was several times greater than the relative hazard for No. 2 diesel fuel oil or Prudhoe Bay crude oil. Although compositonal differences in water-soluble fractions (WSF) were noted among materials, phenolics were the major compound class in all WSFs and probably the primary contributor to acute toxicity.