Wave attenuation due to ice cover: an experimental model in a wave-ice flume

Waves penetrate deep into the ice covered seas, inducing breakup of the ice cover. Concomitantly, the ice cover attenuates the wave energy over distance, so that wave impacts die out eventually. Observations of wave attenuation and concurrent wave-induced breakup in the literature are serendipitous...

Full description

Bibliographic Details
Main Authors: Dolatshah, A., Nelli, F., Alberello, A., Bruneau, L., Bennetts, L. G., Meylan, M. H., Monty, J. P., Toffoli, A.
Other Authors: The University of Newcastle. Faculty of Science, School of Mathematical and Physical Sciences
Format: Conference Object
Language:English
Published: American Society of Mechanical Engineers (ASME) 2017
Subjects:
ice
Online Access:http://hdl.handle.net/1959.13/1394567
Description
Summary:Waves penetrate deep into the ice covered seas, inducing breakup of the ice cover. Concomitantly, the ice cover attenuates the wave energy over distance, so that wave impacts die out eventually. Observations of wave attenuation and concurrent wave-induced breakup in the literature are serendipitous due to difficulties in making measurements in ice covered seas. Hence understanding of wave-ice interactions remain uncertain. Here we present measurements of wave propagation through ice covered waters in the new experimental wave-ice facility at the University of Melbourne. The facility comprises of a 14m long and 0.76m wide flume in a refrigerated chamber, where temperatures can be lowered down to -12 degrees Celsius to generate a continuous ice cover on the water surface. A wave maker, installed at one end, is used to generate regular waves, ranging from gently-sloping to storm-like conditions. Wave attenuation rates are determined from video-camera images of the displacements of markers embedded in the ice cover. The experiments investigated wave propagation through the continuous ice cover, breakup, and propagation through the broken ice cover. Spatial evolution of the breakup and geometrical properties of floes are monitored and correlated with incident wave properties. Wave attenuation over broken ice is investigated and compared against the continuous ice case.