Retrospective: Adjusting Contaminant Concentrations in Bird Eggs to Account for Moisture and Lipid Loss During Their Incubation
By the 1960s, research and monitoring efforts on chlorinated pesticide residues in tissues of wildlife were well underway in North America and Europe. Conservationists and natural resource managers were attempting to resolve whether pesticide exposure and accumulated residues were related to populat...
Main Authors: | , , |
---|---|
Format: | Text |
Language: | unknown |
Published: |
DigitalCommons@University of Nebraska - Lincoln
2016
|
Subjects: | |
Online Access: | https://digitalcommons.unl.edu/usgsstaffpub/951 https://digitalcommons.unl.edu/context/usgsstaffpub/article/1961/viewcontent/Rattner_BECT_2016_Retrospective_Adjusting_Contaminant.pdf |
Summary: | By the 1960s, research and monitoring efforts on chlorinated pesticide residues in tissues of wildlife were well underway in North America and Europe. Conservationists and natural resource managers were attempting to resolve whether pesticide exposure and accumulated residues were related to population declines in several species of predatory and scavenging birds (e.g., bald eagle Haliaeetus leucocephalus, peregrine falcon Falco peregrinus, brown pelican Pelecanus occidentalis and osprey Pandion haliaetus). The avian egg was a favored sampling matrix even before the realization that eggshell thinning was linked to population declines (Ratcliffe 1967; Hickey and Anderson 1968) and that the concentration of p,p’-DDE in an egg was associated with the shell thinning phenomenon (e.g., Blus et al. 1972; Wiemeyer et al. 1988). The necessity for making wet-weight concentration adjustments to account for natural moisture loss during incubation of viable eggs was realized. Correction for the more dramatic moisture loss in non-viable decaying eggs was recognized as being paramount. For example, the ∑DDT residues in osprey eggs were reported to vary by as much as eightfold without accounting for moisture loss adjustments (Stickel et al. 1965). In the absence of adjusting concentrations to the fresh wet-weight that was present at the time of egg laying, the uncorrected values exaggerated contaminant concentrations, yielding artifactual results and ultimately incorrect conclusions. The adjustment to fresh wet-weight concentration is equally important for many other persistent contaminants including PCBs, dioxins, furans, and brominated diphenyl ethers. |
---|