Diversity of Tetrabothriidae (Eucestoda) among Holarctic Alcidae (Charadriiformes): Resolution of the Tetrabothrius jagerskioeldi Cryptic Species Complex: Cestodes of Alcinae—Provides Insights on the Dynamic Nature of Tapeworm and Marine Bird Faunas under the Stockholm Paradigm

We begin resolution of the Tetrabothrius jagerskioeldi–species complex with descriptions of Tetrabothrius alcae n. sp. based on numerous specimens, primarily in murres (species of Uria), from the greater North Pacific basin and Tetrabothrius sinistralis n. sp. based on cestodes in guillemots (specie...

Full description

Bibliographic Details
Main Authors: Hoberg, Eric P., Soudachanh, Kaylen Marie
Format: Text
Language:unknown
Published: DigitalCommons@University of Nebraska - Lincoln 2021
Subjects:
Online Access:https://digitalcommons.unl.edu/manter/17
https://digitalcommons.unl.edu/context/manter/article/1017/viewcontent/HobergSoudachanh_pages_2.pdf
Description
Summary:We begin resolution of the Tetrabothrius jagerskioeldi–species complex with descriptions of Tetrabothrius alcae n. sp. based on numerous specimens, primarily in murres (species of Uria), from the greater North Pacific basin and Tetrabothrius sinistralis n. sp. based on cestodes in guillemots (species of Cepphus) from the central Bering Sea and West Greenland. These tetrabothriids are characterized, among 44 species of Tetrabothrius in avian hosts, by attributes of the scolex, male and female organ systems, structure and dimensions of the vitelline gland, numbers of testes, configuration of the genital atrium, genital papillae and the male and female atrial canals, position of the genital ducts relative to the poral osmoregulatory canals, structure, dimensions and position of the vaginal seminal receptacle, and dimensions of the embryophore and oncosphere, in addition to a broader array of characters. Remarkably, T. alcae, T. sinistralis, and a cryptic complex had remained unrecognized for the past century, given that these species are unequivocally differentiated by multiple suites of unique structural attributes relative to T. jagerskioeldi. Alcids and cestodes of the T. jagerskioeldi–complex are restricted to cold marine systems of advection and upwelling along coastal margins adjacent to the continental shelf or are associated with archipelagos (especially the Aleutian Arc), isolated islands and rocky headlands of the Bering Sea, Chukchi Sea, Gulf of Alaska, Sea of Okhotsk, and Sea of Japan. Tetrabothrius alcae, T. jagerskioeldi, and T. sinistralis may occur in sympatry but with minimal overlap in the faunas associated with murres (Alcini) and guillemots (Cepphini). Transmission for cestodes and persistence of this fauna is expected to be associated with pelagic and neritic systems adjacent to colony sites in zones where critical prey species are concentrated or secondarily dispersed downstream by predictable advective and upwelling processes and become available to foraging birds. Faunal assembly represents ...