Multi-scale dynamical analysis (MSDA) of sea level records versus PDO, AMO, and NAO indexes

Herein I propose a multi-scale dynamical analysis to facilitate the physical interpretation of tide gauge records. The technique uses graphical diagrams. It is applied to six secular-long tide gauge records representative of the world oceans: Sydney, Pacific coast of Australia; Fremantle, Indian Oce...

Full description

Bibliographic Details
Published in:Climate Dynamics
Main Author: SCAFETTA, NICOLA
Other Authors: Scafetta, Nicola
Format: Article in Journal/Newspaper
Language:English
Published: 2014
Subjects:
Online Access:http://hdl.handle.net/11588/592768
https://doi.org/10.1007/s00382-013-1771-3
Description
Summary:Herein I propose a multi-scale dynamical analysis to facilitate the physical interpretation of tide gauge records. The technique uses graphical diagrams. It is applied to six secular-long tide gauge records representative of the world oceans: Sydney, Pacific coast of Australia; Fremantle, Indian Ocean coast of Australia; New York City, Atlantic coast of USA; Honolulu, US state of Hawaii; San Diego, US state of California; and Venice, Mediterranean Sea, Italy. For comparison, an equivalent analysis is applied to the Pacific Decadal Oscillation (PDO) index and to the Atlantic Multidecadal Oscillation (AMO) index. Finally, a global reconstruction of sea level (Jevrejeva et al. in Geophys Res Lett 35:L08715, 2008) and a reconstruction of the North Atlantic Oscillation (NAO) index (Luterbacher et al. in Geophys Res Lett 26:2745-2748, 1999) are analyzed and compared: both sequences cover about three centuries from 1700 to 2000. The proposed methodology quickly highlights oscillations and teleconnections among the records at the decadal and multidecadal scales. At the secular time scales tide gauge records present relatively small (positive or negative) accelerations, as found in other studies (Houston and Dean in J Coast Res 27:409-417, 2011). On the contrary, from the decadal to the secular scales (up to 110-year intervals) the tide gauge accelerations oscillate significantly from positive to negative values mostly following the PDO, AMO and NAO oscillations. In particular, the influence of a large quasi 60-70 year natural oscillation is clearly demonstrated in these records. The multiscale dynamical evolutions of the rate and of the amplitude of the annual seasonal cycle of the chosen six tide gauge records are also studied.