EXPLOITING MARINE BIODIVERSITY: THE POTENTIAL OF UNCULTIVABLE MICROORGANISMS FOR THE IDENTIFICATION OF NOVEL ANTIMICROBIAL COMPOUNDS

Antimicrobial resistance has spread dramatically in last 60 years leading to an increase in the number of deaths due to infection diseases. The excessive and often inappropriate use of antimicrobial drugs has led to the development of a new group of microorganisms, the Multidrug Resistant (MDR) bact...

Full description

Bibliographic Details
Main Author: Palma Esposito, Fortunato
Format: Doctoral or Postdoctoral Thesis
Language:Italian
Published: 2018
Subjects:
Online Access:http://www.fedoa.unina.it/12270/
http://www.fedoa.unina.it/12270/7/palmaesposito_fortunato_30_Completa.pdf
Description
Summary:Antimicrobial resistance has spread dramatically in last 60 years leading to an increase in the number of deaths due to infection diseases. The excessive and often inappropriate use of antimicrobial drugs has led to the development of a new group of microorganisms, the Multidrug Resistant (MDR) bacteria, which show resistance toward the most common antibiotics. This phenomenon is becoming a serious threat to the public health and the economy. The bioprospecting of marine and extreme environments has yielded a noteworthy number of novel molecules with biotechnological applications from a wide range of macro and microorganisms, representing a very promising strategy to counteract MDR bacteria. The main gap is to have access to the real microbial biodiversity because less than 1% of microorganisms is cultivable in the laboratory conditions. In this project, new antimicrobial compounds have been discovered from bacteria and fungi by different strategies. In the first work, following a bioprospecting pipeline, Antarctic shallow water sediments were used to isolate microorganisms that were screened for their capability to inhibit the growth of selected MDR bacteria. A bioassay-guided purification approach allowed the identification of rhamnolipids (a class of glycolipids well known as biosurfactants) produced by a Pseudomonas gessardii strain able to strongly inhibit MDR strains, in particular Gram-positive bacteria. These molecules have many biotechnological applications, especially in bioremediation field and, over last years, as antimicrobial compounds. The second work focuses the attention on the improvement of cultivation methods, exploiting a new device, the Miniaturized Culture Chip (MCC), for the isolation of “not-common” or novel bacteria. The innovation of this system is the possibility to grow microorganisms directly in their natural habitat simulating environmental conditions. By using the MCC an unexplored Antarctic strain, Aequorivita sp., was isolated. A genome mining approach on Aequorivita sp. was ...